Категории: ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника |
КОННОТАЦИЯ (от лат. connotatio — добавочное значение)— дополнительные черты, оттенки, сопутствующие основному содержанию понятия, суждения. В обыденной речи и в художественном творчестве к основному семантическому значению понятий и суждений часто добавляются дополнительные оттенки, служащие для выражений эмоционального или оценочного отношения говорящего к предмету речи. Напр., слова «военные» и «военщина» совпадают по своему семантическому значению, однако во втором слове присутствует негативный оттенок, которого нет в первом слове. КОНТРАДИКТОРНАЯ ПРОТИВОПОЛОЖНОСТЬ (от лат. contradictorius — противоречащий)— отношение между противоречащими друг другу суждениями. В традиционной логике противоречащими друг другу считаются общеутвердительные и частноотрицательные суждения, имеющие один и тот же субъект и предикат («Все цветы красивы» и «Некоторые цветы некрасивы»), а также общеотрицательные и частноутвердительные суждения («Ни один цветок не красив» и «Некоторые цветы красивы»). К. п. характеризуется следующими особенностями: 1) суждения не могут быть одновременно истинными; 2) они не могут быть одновременно ложными; 3) из двух противоречащих друг другу суждений одно непременно истинно, а другое ложно, третьего не дано. Последнее свойство контрадикторных суждений широко используется в процессах рассуждения и доказательства. Если нам удалось показать ложность некоторого суждения, то мы можем с уверенностью утверждать, что противоречащее ему суждение истинно, и наоборот. КОНЪЮНКЦИЯ (от лат. conjunctio - союз, связь) - логическая операция, с помощью которой два или более высказываний объединяются в новое сложное высказывание. Это новое высказывание называется конъюнктивным высказыванием или просто К. Символически конъюнктивная связка обозначается знаками « ∙ », «&», «Ù». Если А, В, С... представляют простые высказывания, то конъюнктивное высказывание выглядит следующим образом: А&В или А&В&С и т. п. В обыденной речи К. соответствует союз «и», поэтому К. читается так: А и В. Напр.: «Пассажиры заняли свои места, и поезд тронулся». Значение истинности сложного конъюнктивного высказывания зависит от истинностных значений входящих в него простых высказываний и определяется на основе следующей таблицы истинности:
Эта таблица говорит о том, что конъюнктивное высказывание истинно только в одном случае, когда все входящие в него простые высказывания истинны. КОСВЕННОЕ ДОКАЗАТЕЛЬСТВО - доказательство, в котором истинность тезиса устанавливается путем показа ошибочности противоположного ему допущения. При прямом доказательстве задача состоит в том, чтобы найти убедительные аргументы, из которых логически вытекает тезис. В К. д. рассуждение идет как бы окольным путем. Прямые аргументы для выведения из них доказываемого положения не отыскиваются. Вместо этого формулируется антитезис, отрицание этого положения, и тем или иным способом показывается его несостоятельность. Поскольку К. д. использует отрицание доказываемого положения, оно называется также доказательством от противного. Напр., врач, убеждая пациента, что тот не болен малярией, может рассуждать так: «Если бы действительно была малярия, имелся бы ряд характерных для нее симптомов, в частности общая слабость и озноб. Однако таких симптомов нет. Значит, нет и малярии». КРУГ В ДОКАЗАТЕЛЬСТВЕ (лат. — circulus in demonstrando) — логическая ошибка в доказательстве, заключающаяся в том, что истинность доказываемого положения (тезиса) обосновывается с помощью аргумента, истинность которого обосновывается с помощью доказываемого тезиса. Данную ошибку называют также «порочным кругом». КРУГ В ОПРЕДЕЛЕНИИ — логическая ошибка, связанная с нарушением одного из правил определения и состоящая в том, что при определении некоторого понятия в определяющей части используется понятие, которое, в свою очередь, определяется с помощью данного определяемого понятия. Напр., в определении «Вращение есть движение вокруг своей оси» будет допущена ошибка круга, если понятие «ось» само определяется через понятие «вращение»: ось есть прямая, вокруг которой происходит вращение. Частным случаем этой ошибки является тавтология — повторение в определяющей части самого определяемого понятия, хотя, быть может, в несколько ином словесном выражении, напр.: «Фильтрование — процесс разделения с помощью фильтра» (см.: Определение). ЛЕММА (от греч. lemma — предположение) - в математике вспомогательное предложение, употребляемое при доказательстве одной или нескольких теорем. В логике — условно-разделительное, или лемматическое, умозаключение ЛОГИКА КЛАССИЧЕСКАЯ - раздел современной (математической, символической) логики, включающий классическую логику высказываний и классическую логику предикатов. Л.к. опирается на двузначности принцип, в соответствии с которым всякое высказывание является или истинным, или ложным. ЛОГИКА ОТНОШЕНИЙ - раздел логики, изучающий свойства высказываний об отношениях между объектами различной природы. . ЛОГИЧЕСКАЯ ПРАВИЛЬНОСТЬ— соответствие законам и правилам формальной логики. Обычно проводят различие между истинностью и правильностью человеческого мышления. Понятие истины характеризует мышление в его отношении к действительности: мысль, предложение истинны, если они соответствуют действительности. Понятие правильности характеризует мышление в его отношении к законам и правилам логики: рассуждение правильно, если в нем соблюдены все необходимые правила логики. Различие между истинностью и правильностью отчетливо проявляется в тех случаях, когда формально правильное рассуждение приводит к ложному выводу. Напр., рассмотрим умозаключение: Все металлы — твердые тела. Ртуть не является твердым телом. Ртуть не является металлом. Это умозаключение построено в форме простого категорического силлогизма, причем оно отвечает соответствующим правилам, т. е. правильно. Однако вывод является ложным. Это обусловлено ложностью первой посылки. Если рассуждение построено неправильно, то даже из истинных посылок мы можем получить как истину, так и ложь. Напр.: Все тигры — полосаты. Это животное - полосато. Это животное — тигр. Выводное суждение может быть как истинным, так и ложным, в зависимости от того, кто перед нами — полосатый тигр или полосатая зебра. Для того чтобы выводное знание было безусловно истинным, требуется, чтобы наше рассуждение опиралось на истинные посылки и было правильным. Правильность рассуждений можно контролировать, гораздо сложнее устанавливается истинность знания. Ученые прошлого часто приходили к ложным выводам не потому, что рассуждали неправильно, а потому, что посылки их были ложными. ЛОГИЧЕСКАЯ ФОРМА — способ связи содержательных частей рассуждения (доказательства, вывода и т. п.). В соответствии с основным принципом логики, правильность рассуждения зависит только от его формы и не зависит от его конкретного содержания. Само название «формальная логика» подчеркивает, что эта логика интересуется только формой рассуждения. Л. ф. представляется посредством логических констант и переменных. Логические константы, подобные «и», «или», «если, то» и т. д., не имеют самостоятельного содержания, но с их помощью из одних содержательных выражений могут быть получены новые содержательные выражения. Переменные, входящие в Л. ф., представляют выражения, обладающие самостоятельным содержанием: высказывания, имена (см.: Символы собственные и несобственные). ЛОГИЧЕСКИЕ КОНСТАНТЫ, или: Логические постоянные, — термины, относящиеся к логической форме рассуждения (доказательства, вывода) и являющиеся средством передачи человеческих мыслей и выводов, заключений в любой области. К Л. к. относятся такие слова, как «не», «и», «или», «есть», «каждый», «некоторый» и т. п. Л. к. не имеют самостоятельного содержания. Сами по себе они ничего не описывают и ничего не обозначают. Вместе с тем они позволяют из одних содержательных выражений получать другие. Установление точного смысла Л. к. и выяснение самых общих законов, относящихся к ним, — одна из основных задач логики (см.: Логическая форма, Символы собственные и несобственные, Символика логическая). ЛОГИЧЕСКИЕ ОПЕРАЦИИ - операции, посредством которых из простых высказываний образуются сложные, из простых терминов — сложные, из высказываний — термины, из терминов — высказывания и т. д. ЛОГИЧЕСКОЕ СЛЕДОВАНИЕ - отношение, существующее между посылками и обоснованно выводимыми из них заключениями. Л.с. относится к числу фундаментальных, исходных понятий логики, точного универсального определения не имеет; в частности, описание его с помощью слов «выводимо», «вытекает» и т. п. содержит неявный круг, поскольку последние являются синонимами слова «следует». Понятие Л. с. обычно характеризуется через связи с другими логическими понятиями, и прежде всего через понятия логического закона и модели. МЕТАФОРА (от греч, metaphora - перенос, образ) - перенесение свойств одного предмета (явления или аспекта бытия) на другой по принципу их сходства в к.-л. отношении или по контрасту, напр.: «говор волн», «нос самолета», «свинцовые тучи» и т. п. В отличие от сравнения, где присутствуют оба члена сопоставления, М. — это скрытое сравнение, в котором слова «как», «как будто», «словно» и т. п. опущены, но подразумеваются. В М. различные признаки — то, чему уподобляется предмет, и свойства самого предмета — представлены не в их качественной раздельности, как в сравнении, а сразу даны в новом нерасчлененном единстве. Обладая неограниченными возможностями в сближении или неожиданном уподоблении самых разных предметов и явлений, по существу по-новому осмысливая предмет, М. позволяет вскрыть, обнажить, прояснить его внутреннюю природу. МЕТАЯЗЫК (от греч. meta - после, за, позади) - язык, средствами которого исследуются и описываются свойства другого языка, называемого предметным, или объектным. Напр., когда мы начинаем изучать иностранный язык, знакомиться с его выражениями, с его грамматической структурой, системой времен, падежей и т. п., мы пользуемся для описания свойств этого пока еще не известного нам языка своим родным языком, который и выступает в данном случае в качестве М. МНОГОЗНАЧНАЯ ЛОГИКА - совокупность логических систем, опирающихся на принцип многозначности. В классической двузначной логике выражения при интерпретации принимают только два значения — «истинно» и «ложно», в М. л. рассматриваются и другие значения, напр. «неопределенно», «возможно», «бессмысленно» и т. п. В зависимости от множества истинностных значений различают конечнозначные и бесконечнозначные логики. М. л.является одним из интенсивно развивающихся разделов логики неклассической. МОДАЛЬНОСТЬ (от лат. modus — мера, способ) — оценка высказывания, данная с той или иной точки зрения. Модальная оценка выражается с помощью понятий «необходимо», «возможно», «доказуемо», «опровержимо», «обязательно», «разрешимо» и т. п. МОДУС (лат. modus - мера, способ, образ, вид) - философский термин, обозначающий свойство предмета, присущее ему только в некоторых состояниях и зависящее от окружения предмета и тех связей, в которых он находится. М. противопоставляется атрибуту— неотъемлемому свойству предмета, без которого он не может ни существовать, ни мыслиться. МЫШЛЕНИЕ — активный процесс отражения объективного мира в понятиях, суждениях, научных теориях, гипотезах и т. п., имеющий опосредованный, обобщенный характер, связанный с решением нетривиальных задач; высший продукт особым образом организованной материи — человеческого мозга. М. опосредствовано: а) ощущениями и восприятиями, на базе которых формируется мыслительный акт; б) прошлым опытом, благодаря чему внешние причины (объекты познания) отражаются в голове человека через посредство внутренних условий (накопленного ранее опыта); в) познанием чувственно воспринимаемого, непосредственно наблюдаемого, на основе анализа которого человек отражает в М. такие стороны действительности, которые не даны ему в непосредственном опыте (напр., с помощью М. человек формирует понятия о причинной связи, точке, бесконечности и т. п., которые не даны ему в непосредственном опыте). НЕОБХОДИМЫЕ И ДОСТАТОЧНЫЕ УСЛОВИЯ (в логике и математике) - условия, устанавливающие зависимость истинности к.-л. утверждения А от наличия условий, фиксируемых в другом утверждении Я Необходимыми условиями истинности утверждения А называются условия, без соблюдения которых А не может быть истинным. Достаточными называются такие условия, при наличии (выполнении, соблюдении) которых утверждение А является истинным. Условия могут быть необходимыми, но недостаточными, достаточными, но не необходимыми, необходимыми и достаточными. Так, делимость числа п на 2 есть необходимое, но недостаточное условие его делимости на 6 (т. е. необходимое, но недостаточное условие истинности утверждения: «Число п делится на 6»). Это условие является необходимым потому, что без его наличия число п не будет делиться на 6. Это условие не является достаточным потому, что при его наличии число п не обязательно будет делиться на 6. Наоборот, делимость числа п на 6 будет достаточным, но не необходимым условием его делимости на 2, потому что при его наличии число п всегда будет делиться на 2. Это условие не является необходимым, потому что, если число не делится на 6, оно не обязательно не делится на 2. Условие же делимости числа и на 2 и на 3 есть необходимое и достаточное условие его делимости на 6: если не соблюдено условие, то утверждение «Число n делится на 6» будет ложным (условие является необходимым); если же условие соблюдено, то утверждение «Число п делится на 6» будет истинным (условие является достаточным). НЕПОСРЕДСТВЕННОЕ УМОЗАКЛЮЧЕНИЕ (в традиционной логике) — умозаключение из одной посылки. К числу Н. у. относятся обращение суждений, превращение суждений, противопоставление предикату, некоторые умозаключения по логическому квадрату, напр. от истинности общих суждений (А и Е) к истинности соответствующих частных суждений (I и О) и др. НЕПРОТИВОРЕЧИВОСТЬ - свойство предложений некоторой теории (в случае аксиоматической теории — системы ее аксиом), заключающееся в невыводимости из них противоречия. Если отрицание какого-то предложения может быть доказано в теории, то о самом предложении говорится, что оно опровержимо в ней. Непротиворечивость теории означает, что никакое предложение не может быть в ней и доказано, и вместе с тем опровергнуто. Требование Н. является обязательным требованием к научной и, в частности, логической теории. НЕПРОТИВОРЕЧИЯ ЗАКОН — логический закон, согласно которому высказывание и его отрицание не могут быть одновременно истинными. Закон говорит о противоречащих друг другу высказываниях, т. е. высказываниях, одно из которых является отрицанием другого. Отсюда иное название закона — закон противоречия, подчеркивающее, что закон отрицает противоречие, объявляет его ошибкой и тем самым требует непротиворечивости. . НОРМАТИВНОЕ ВЫСКАЗЫВАНИЕ, или: Деонтическое высказывание, — высказывание, устанавливающее какую-то норму поведения. Языковые формулировки Н. в. многообразны и разнородны. Иногда оно имеет форму повелительного (императивного) предложения. Чаще Н. в. представляется повествовательным предложением с особыми нормативными словами: «обязательно», «разрешено», «запрещено», «(нормативно) безразлично». ОБОБЩЕНИЕ (лат. generalisatio) — мыслительная операция, переход от мысли об индивидуальном, заключенной в понятии, суждении, норме, гипотезе, вопросе и т. п., к мысли об общем; от мысли об общем к мыслям о более общем; от ряда фактов, ситуаций, событий к их отождествлению в каких-то свойствах с последующим образованием множеств, соответствующих этим свойствам (см.: Индуктивное обобщение). Путем индуктивного О. образуются не только понятия, но и суждения. Под аналитическими понимаются О., осуществляемые на основе анализа соответствующих языковых выражений, определений, применения правил дедукции и не требующие обращения к опыту. Примерами могут быть мысленные переходы от понятия «механическая форма движения материи» к понятию «форма движения материи», от суждения «Киты — млекопитающие» к суждению «Киты — позвоночные», от вопроса «Разрешима ли данная проблема в данном случае?» к вопросу «Разрешима ли данная проблема в общем случае?», от юридической нормы «кража запрещена» к норме «хищение запрещено». Под синтетическими (или индуктивными) понимаются О., связанные с изучением опытных данных. Они используются при формировании и развитии различных понятий, суждений (в том числе законов), научных теорий. В традиционной логике под О. понятия понимается переход от понятия меньшей общности к понятию большей общности путем отбрасывания признаков, принадлежащих только тем элементам, которые входят в объем обобщаемого понятия (переход от понятия «прямоугольный треугольник» к понятию «треугольник»). Противоположной О. является операция ограничения понятия. Большую роль в синтетических О. играет абстракция отождествления. Процесс О. широко используется при образовании понятий не только в научном познании, но и, напр., в процессе формирования художественных образов. ОБОЗНАЧЕНИЯ ОТНОШЕНИЕ - отношение между именем и его денотатом, т. е. объектом, к которому относится имя; то же, что и отношение именования. О. о. является одним из фундаментальных отношений семантического анализа. Теория О. о. базируется на следующих принципах: 1) однозначности: каждое имя обозначает только один объект; 2) предметности: предложение говорит о предметах, обозначенных входящими в предложение именами; 3) взаимозаменимости: если два имени обозначают один и тот же предмет, то истинностное значение предложения не изменится, если одно из этих имен заменить другим. Казалось бы, эти принципы являются совершенно естественными, однако их последовательное проведение встречает значительные трудности. Во-первых, в неэкстенсиональных контекстах нарушается принцип взаимозаменимости, напр. предложение «Н. не знал, что Пушкин был автором «Евгения Онегина»» может быть истинным, но едва ли его можно заменить предложением «Н. не знал, что Пушкин был Пушкиным». Во-вторых, возникают проблемы, связанные с использованием пустых имен, таких, как «Пегас», «Зевс» и т. п. Напр., два предложения «Круглый квадрат кругл» и «Круглый квадрат не кругл» являются истинными, хотя и противоречат друг другу, следовательно, нарушается закон противоречия. В-третьих, встают проблемы, связанные с использованием единичных отрицательных высказываний существования, напр.: «Не существует простого числа между 7 и 11». Из утвердительного единичного высказывания следует высказывание существования, напр. из высказывания «Дунай — европейская река» следует «Существует такой х, что х — европейская река». Однако если мы возьмем высказывание «Пегас не существует», то из него будет следовать «Существует такой х, который не существует». И наконец, четвертая группа проблем, возникающая в связи с принципами О.о., относится к анализу утверждений тождества: как отличить высказывания «а = а» и «а=b»? Решение перечисленных проблем дает мощный стимул развитию логической семантики. ОБОСНОВАНИЕ— процедура проведения тех убедительных аргументов, или доводов, в силу которых следует принять к.-л. утверждение или концепцию. О. является, как правило, сложным процессом, не сводимым к построению отдельного умозаключения или проведению одноактной эмпирической проверки. О. обычно включает целую серию мыслительных действий, касающихся не только рассматриваемого положения, но и той системы утверждений, той теории, составным элементом которой оно является. ОБРАЩЕНИЕ (лат. conversio) — в традиционной логике вид непосредственного умозаключения, в котором вывод получается путем постановки предиката посылки на место субъекта, а субъекта посылки - на место предиката. Общая схема О. выглядит следующим образом: S есть Р. Р есть S. Напр., из суждения «Птицы есть позвоночные» мы путем О. получаем вывод «Позвоночные есть птицы». Общеутвердительные суждения «Все S есть Р» (типа A) обращаются в частноутвердительные «Некоторые Р есть S» (типа I), напр., суждение «Все рыбы дышат жабрами» обращается в суждение «Некоторые дышащие жабрами есть рыбы»; общеотрицательные суждения «Ни одно S не есть Р» (типа Е) обращаются в общеотрицательные «Ни одно Р не есть S» (типа Е), напр., суждение «Ни один кит не является рыбой» обращается в суждение «Ни одна рыба не есть кит»; частноутвердительные суждения «Некоторые S есть P» (типа I) обращаются в частноутвердительные «Некоторые Р есть S», напр., суждение «Некоторые металлы — жидкости» обращается в суждение «Некоторые жидкости — металлы»; наконец, из частноотрицательного суждения нельзя сделать вывод путем О. ОБЪЕДИНЕНИЕ (СЛОЖЕНИЕ) КЛАССОВ (МНОЖЕСТВ) - логическая операция, позволяющая из исходных классов образовывать новый класс (множество), в который войдут все элементы каждого из исходных классов. Так, в результате О. к. спортсменов (А) и класса студентов (В) мы получим класс людей, состоящий из студентов, не являющихся спортсменами, из спортсменов, не являющихся студентами, и из тех людей, которые одновременно являются и студентами, и спортсменами. Вся заштрихованная поверхность рисунка будет представлять собой О. к. студентов и спортсменов. Символически полученный результат объединения записывают в виде выражения A ¥ В (см.: Круги Эйлера). ОБЪЕКТИВНОСТЬ— независимость от человеческого сознания, от воли и желаний людей, от их субъективных вкусов и пристрастий. Свойством О. обладает внешний по отношению к сознанию мир, который является причиной самого себя и развивается в силу присущих ему законов, порождая на определенной ступени своего развития человека и человеческое сознание, представляющее собой отображение объективного мира. ОБЪЕКТНЫЙ (ПРЕДМЕТНЫЙ) ЯЗЫК - язык, выражения которого относятся к некоторой области объектов, их свойств и отношений. Напр., язык механики описывает свойства механического движения материальных тел и взаимодействия между ними; язык арифметики говорит о числах, об их свойствах, операциях над числами; язык химии — о химических веществах и реакциях и т. д. Вообще любой язык обычно используется прежде всего для того, чтобы говорить о каких-то внеязыковых объектах, и в этом смысле каждый язык является объектным. Однако в семантическом анализе приходится говорить о самом языке, и тогда мы вынуждены проводить различие между двумя языками — О. я. и метаязыком, с помощью которого мы говорим о терминах и выражениях О. я. Конечно, в естественном языке О. я. и метаязык соединены: мы говорим на этом языке как о предметах, так и о самих выражениях языка. Такой язык называется семантически замкнутым. Языковая интуиция обычно помогает нам избегать парадоксов, к которым приводит семантическая замкнутость естественного языка. Но при построении формализованных языков тщательно следят за тем, чтобы О. я. был четко отделен от метаязыка. ОБЪЯСНЕНИЕ - одна из важнейших функций научной теории и науки в целом. Понятие О. используется и в повседневном языке — объяснить к.-л. явление означает сделать его ясным, понятным для нас. ОГРАНИЧЕНИЕ ПОНЯТИЯ - логическая операция перехода от понятия с большим объемом к понятию с меньшим объемом, от рода к виду. Этот переход осуществляется за счет добавления к содержанию исходного понятия дополнительных признаков, принадлежащих лишь части предметов, входящих в объем исходного понятия. Напр., добавив к содержанию понятия «треугольник» свойство «быть прямоугольным», мы получим понятие «прямоугольный треугольник», которое является видовым по отношению к исходному понятию. |
||||||||||||||||
|
Последнее изменение этой страницы: 2016-07-23 lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда... |