Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






ОПРЕДЕЛЕНИЕ КЛАССИЧЕСКОЕ, или: Определение через род и видовое отличие,

- определение, в котором пред­меты определяемого понятия вводятся в объем более широкого понятия и при этом с помощью отличительных признаков (видо­вое отличие) выделяются среди предметов этого более широкого понятия. Примерами О. к. могут быть: «Ромб есть плоский четыре­хугольник, у которого все стороны равны» (1), «Лексикология есть наука, изучающая словарный состав языка» (2). В О. к. (1) ромб (определяемый предмет) вводится сначала в класс плоских четырехугольников (род), а затем при помощи специфицирующего признака «иметь равные стороны» (видовое отличие) вы­деляется среди других плоских четырехугольников, отличается от них. В определении (2) определяемый предмет вводится в класс наук (род), а затем посредством указания специфицирующего признака «изучать словарный состав языка» (видовое отличие) выделяется среди других наук, которые не обладают этим при­знаком. В отличие от О. к. (1), объем определяемого понятия в О. к. (2) представляет класс, состоящий лишь из одного элемен­та (см.: Класс, Множество в логике). Многие научные и повсед­невные определения принимают форму О. к. В отличие от по­вседневных, в научных О. к. (если речь идет об опытных науках) видовое отличие всегда должно представлять собой существен­ный признак. По отношению именно к О. к. (или к тем, которые могут быть интерпретированы как О. к.) формулируются извес­тные правила (см.: Определение). Родо-видовые отношения игра­ют большую роль не только в О. к., но и при делении понятий и в классификациях, где процесс деления родового понятия на со­ставляющие его виды играет важную роль. Поэтому o.k. или оп­ределения через род и видовое отличие часто в логике называют классификационными.

ОПРЕДЕЛЕНИЕ НЕЯВНОЕ— определение, не имеющее формы равенства двух понятий. К О. н. относятся определение контексту­альное, определение остенсивное, определение аксиоматическое и др. О. н. противопоставляется определению явному, приравнивающе­му, или отождествляющему, два понятия.

ОПРЕДЕЛЕНИЕ НОМИНАЛЬНОЕ

— определение, выражаю­щее требование, как должно употребляться вводимое понятие, к каким объектам оно должно применяться. О. н. противопостав­ляется определению реальному, представляющему собой описа­ние определяемых объектов. Различие между этими двумя типа­ми определений принципиально важно, но его не всегда легко провести. Является ли некоторое определение описанием или же предписанием (требованием), во многом зависит от кон­текста употребления этого определения. Кроме того, некоторые определения носят смешанный, описательно-предписательный характер и функционируют в одних контекстах как описания, а в других — как предписания. Таковы, в частности, определения толковых словарей, описывающие обычные значения слов и одновременно указывающие, как следует правильно употреб­лять эти слова.

Реальное определение является истинным или ложным, как и всякое описательное высказывание. О. н., как и всякое предписание, не имеет истинностного значения. Оно может быть целесо­образным или нецелесообразным, эффективным или неэффек­тивным, но не истинным или ложным.

ОПРЕДЕЛЕНИЕ ОПЕРАЦИОНАЛЬНОЕ- определение физи­ческих величин (длины, массы, силы и др.) через описание совокупности специфицирующих их экспериментально-изме­рительных операций, напр.: «Сила есть физическая величина, пропорциональная растяжению пружины в пружинных весах». Иногда О. о. формулируются в сокращенной форме, напр.: «Тем­пература есть то, что измеряется термометром», где Dfn (опре­деляющее) в действительности представляет собой указание не только на прибор, которым измеряется определяемая физичес­кая величина, но и на совокупность операций, используемых при измерении температуры, которые в определении подразу­меваются. Одна и та же физическая величина может быть опре­делена не только операционально, но и при помощи определе­ний на теоретическом уровне. Напр., на теоретическом уровне температура может быть определена как величина, пропорцио­нальная кинетической энергии молекул. В соответствующих фи­зических теориях формулируются т.наз. правила соответствия, устанавливающие связь между понятиями, определенными опе­рационально, и понятиями, определенными на теоретическом уровне. Так, в кинетической теории газов формулируется следу­ющее проверяемое (и притом истинное) правило соответствия: «Числовые значения температуры газа, получаемые на основе показаний термометра, являются показателем средней кинети­ческой энергии молекул». Правила соответствия, таким образом, обеспечивают целостность эмпирического и теоретического уров­ней исследования. О. о. широко используются не только в физи­ке, но и в других опытно-экспериментальных науках.

ОПРЕДЕЛЕНИЕ ОСТЕНСИВНОЕ (от лат. ostentus - показыва­ние, выставление напоказ)— неявное определение, раскрываю­щее содержание понятия путем непосредственного показа, озна­комления обучаемого с предметами, действиями и ситуациями, обозначаемыми данным понятием. Напр., затрудняясь определить, что представляет собой зебра, мы можем подвести спрашиваю­щего к клетке с зеброй и сказать: «Это и есть зебра». О. о. не явля­ется чисто вербальным, поскольку включает не только слова, но и определенные действия.

ОПРЕДЕЛЕНИЕ РЕАЛЬНОЕ

— определение, дающее описание каких-то объектов. О. р. противопоставляется определению номиналь­ному, выражающему требование (предписание, норму), каким должны быть рассматриваемые объекты. Различие между О. р. и определением номинальным опирается на различие между опи­санием и пред писанием. Описать предмет — значит пере­числить те признаки, которые ему присущи; описание, соответ­ствующее предмету, является истинным, не соответствующее — ложным. Иначе обстоит дело с предписанием, его функция от­лична от функции описания. Описание говорит о том, каким является предмет, предписание указывает, каким он должен быть. «Ружье заряжено» — описание, и оно истинно, если ружье на самом деле заряжено. «Зарядите ружье!» — предписание, и его нельзя отнести к истинным или ложным.

Хотя различие между определениями-описаниями и опреде­лениями-предписаниями несомненно важно, его обычно нелег­ко провести. Зачастую утверждение в одном контексте звучит как О. р., а в другом выполняет функцию номинального. Иногда О. р., описывающее к.-л. объекты, обретает оттенок требования, как употреблять понятие, соотносимое с ними; номинальное опреде­ление может нести отзвук описания. Напр., задача обычного тол­кового словаря - дать достаточно полную картину стихийно сложившегося употребления слов, описать те значения, которые при­даются им в обычном языке. Но составители словарей ставят пе­ред собой и другую цель — нормализовать и упорядочить обычное употребление слов, привести его в определенную систему. Сло­варь не только описывает, как реально используются слова, он указывает также, как они должны правильно употребляться. Опи­сание здесь соединяется с требованием.

ОПРЕДЕЛЕНИЕ ЯВНОЕ

- определение, имеющее форму ра­венства двух понятий. Напр.: «Манометр - это прибор для изме­рения давления» или «Графомания — это болезненное пристрас­тие к писанию, к многословному, пустому, бесполезному сочи­нительству». В О. я. отождествляются, приравниваются друг к другу два понятия. Одно из них - определяемое понятие, со­держание которого требуется раскрыть, другое - определяю­щее понятие, решающее эту задачу. В определении маномет­ра определяемым понятием является «манометр», определяю­щим — «прибор для измерения давления».

О. я. имеет структуру: «S= DfР», где S - определяемое понятие, Р— определяющее понятие и знак «=Df» указывает на равенство понятий S и Р по определению.

Важным частным случаем О. я. является определение классичес­кое, или родо-видовое определение.

ОПРОВЕРЖЕНИЕ

— рассуждение, направленное против выдви­нутого тезиса и имеющее своей целью установление его ложности или недосказанности. Наиболее распространенный прием О. — выведение из опровергаемого утверждения следствий, противо­речащих истине. Если хотя бы одно следствие какого-то положе­ния ложно, то ложным является и само утверждение. Другой прием О. — доказательство истинности отрицания тезиса. Утвер­ждение и отрицание не могут быть одновременно истинными. Как только удается показать, что верным является отрицание тезиса, вопрос о его истинности отпадает.

ОШИБКА ЛОГИЧЕСКАЯ

- нарушения к.-л. законов, правил и схем логики. Если ошибка допущена неумышленно, она называ­ется паралогизмом; если правила логики нарушают умышленно, то это — софизм. Логические ошибки следует отличать от фактических ошибок. Последние обусловлены не нарушением пра­вил логики, а незнанием предмета, фактического положения дел, о котором идет речь. К О. л. нельзя причислять также ошибки сло­весного выражения наших мыслей. К числу последних относится широко известная омонимия — смешение понятий, происходя­щее вследствие того, что разные понятия часто выражаются од­ним и тем же словом, напр. «материализм» философский и «мате­риализм» в практической жизни, близкий к бездуховности.

Классификация О. л. обычно связывается с различными логи­ческими операциями и видами умозаключений. Так, можно выде­лить ошибки в делении понятий, в определении понятий; ошибки в индуктивном выводе; ошибки в дедуктивных умозаключениях; ошибки в доказательстве: по отношению к тезису, к аргументам, к демонстрации.

ПАРАДИГМА (от греч. paradeigma — пример, образец)— совокуп­ность теоретических и методологических положений, принятых на­учным сообществом на известном этапе развития науки и исполь­зуемых в качестве образца, модели, стандарта для научного исследо­вания, интерпретации, оценки и систематизации научных данных, для осмысления гипотез и решения задач, возникающих в процессе научного познания. Неизбежные в ходе научного познания затрудне­ния то или иное сообщество ученых стремится разрешать в рамках принятой им парадигмы. Так, в свое время ученые стремились интер­претировать новые эмпирические данные науки в рамках механисти­ческого мировоззрения, абсолютизировавшего представления класси­ческой механики, представлявшего собой некоторую П. Революцион­ные сдвиги в развитии науки связаны с изменением П.

ПЕРЕСЕЧЕНИЕ КЛАССОВ (МНОЖЕСТВ)- логическая опера­ция по нахождению общих для класса (множества) элементов. Так, П. к. студентов (A) и спортсменов (В) будет класс тех студентов, которые одновременно являются спортсменами. Результат может быть представлен в виде двух пересекающихся кругов (см. рис.), где заштрихованная часть будет представлять множество студентов, яв­ляющихся одновременно спортсмена­ми (см.: Множеств теория). В логике чаще говорят не о П. к., а о пересече­нии понятий. При этом имеется в виду операция нахождения общей части объема понятий.

ПОДМЕНА ТЕЗИСА (лат. ignoratio elenchi)— логическая ошибка в доказательстве, состоящая в том, что начав доказывать некоторый тезис, постепенно в ходе доказательства переходят к доказательству другого положения, сходного с тезисом. При этом происходит на­рушение закона тождества по отношению к тезису: тезис на всем протяжении доказательства должен оставаться одним и тем же. Опасность этой ошибки заключается в том, что благодаря сходству доказанного положения с тезисом создается иллюзия о доказаннос­ти именно тезиса. Напр.. доказывая положение «Н. невиновен», при­водят следующие аргументы: «Н. - хороший семьянин», «Н. — пере­довик производства» и т. п. Из этих аргументов вытекает вывод, что Н. - хороший человек. Но этот вывод не тождествен доказываемому тезису. Налицо подмена. П. т. часто совершается при опровержении, когда опровержение положения, лишь внешне сходного с тезисом, выдают за опровержение самого тезиса или опровержение одного из аргументов (или демонстрации) рассматривают как опровержение тезиса.

Тезис в процессе доказательства можно изменять. Иногда, дока­зывая некоторое положение, мы осознаем, что оно не совсем верно и нужно доказывать другое положение. В таком случае следует прямо сказать об этом, отказаться от ранее выставленного тезиса и сфор­мулировать новый тезис и после этого продолжить доказательство уже нового тезиса.

ПОДТВЕРЖДЕНИЕ— соответствие теории, закона, гипотезы некоторому факту или экспериментальному результату. В методоло­гии научного познания П. рассматривается как один из критериев истинности теории или закона. Для того чтобы установить, соответ­ствует ли теория действительности, т. е. верна ли она, из нее дедуци­руют предложение, говорящее о наблюдаемых или эксперименталь­но обнаруживаемых явлениях. Затем проводят наблюдения или ста­вят эксперимент, устанавливая истинность или ложность данного предложения. Если оно истинно, то это считается П. теории. Напр., обнаружение химических элементов, предсказанных Д. И. Менделе­евым на основе его таблицы, было П. этой таблицы; обнаружение планеты Уран в месте, вычисленном согласно уравнениям небесной механики Ньютона, было П. механики и т. п. С логической точки зрения процедура П. описывается следующим образом. Пусть Т~ проверяемая теория, A — эмпирическое следствие этой теории, связь между Т и А может быть выражена условным суждением «Если Т, то A». В процессе проверки обнаруживается, что A истинно; делается вывод о том, что Т подтверждена. Схема рассуждения выглядит следующим образом:

Если Т, то A.
A.
Т.

Такой вывод не дает достоверного заключения, поэтому на основа­нии истинности A мы не можем заключить, что теория Т также истинна, и говорим лишь, что теория Т подтверждена. Чем больше проверенных истинных следствий имеет теория, тем в большей сте­пени она считается подтвержденной.

ПОЗНАНИЕ— высшая форма отражения объективной действи­тельности, процесс выработки истинных знаний. Первоначально П. представляло собой одну из сторон практической деятельности лю­дей, постепенно в ходе исторического развития человечества П. стало особой деятельностью.

В П. выделяют два уровня: чувственное П., осуществляемое с помощью ощущения, восприятия, представления, и рациональное П., протекающее в понятиях, суждениях, умозаключениях и фиксируемое в теориях. Различают также обыденное, художе­ственное и научное П., а в рамках последнего — П. природы и П. общества. Различные стороны процесса П. исследуются рядом спе­циальных наук: когнитивной психологией, историей науки, социо­логией науки и т. п. Общее учение о П. дает философская теория П.

ПОЛЕМИКА- разновидность спора, отличающаяся тем, что ос­новные усилия спорящих сторон направлены на утверждение своей точки зрения по обсуждаемому вопросу.

Наряду с дискуссией, П. является одной из наиболее распростра­ненных форм спора. С дискуссией ее сближает наличие достаточно определенного тезиса, выступающего предметом разногласий, из­вестная содержательная связность, предполагающая внимание к аргументам противной стороны, очередность выступлений споря­щих, некоторая ограниченность приемов, с помощью которых оп­ровергается противная сторона и обосновывается собственная точ­ка зрения.

Вместе с тем П. существенно отличается от дискуссии. Если целью дискуссии являются прежде всего поиски общего согласия, того, что объединяет разные точки зрения, то основная задача П. — утвержде­ние одной из противостоящих позиций. Полемизирующие стороны менее, чем в дискуссии, ограничены в выборе средств спора, его стратегии и тактики. В П., как и в споре вообще, недопустимы не­корректные приемы (подмена тезиса, аргумент к силе или к неве­жеству, использование ложных и недоказанных аргументов и т. п.). В П. может применяться гораздо более широкий, чем в дискуссии, спектр корректных приемов. Большое значение имеют, в частности, инициатива, навязывание своего сценария обсуждения темы, вне­запность в использовании доводов, выбор наиболее удачного вре­мени для изложения решающих аргументов и т. п.

Хотя П. и направлена по преимуществу на утверждение своей позиции, нужно постоянно помнить, что главным в споре является достижение истины. Победа ошибочной точки зрения, добытая бла­годаря уловкам и слабости другой стороны, как правило, недолговеч­на, и она не способна принести моральное удовлетворение.

ПОНЯТИЕ- общее имя, имеющее относительно ясное и устой­чивое содержание и сравнительно четко очерченный объем. П. явля­ются, напр., «дом», «квадрат», «молекула», «кислород», «атом», «любовь», «бесконечный ряд» и т. п. Отчетливой границы между теми именами, которые можно назвать П., и теми, которые не относятся к П., не существует. «Атом» уже с античности является достаточно оформив­шимся П., в то время как «кислород» и «молекула» до XVIII в. вряд ли могли быть отнесены к П.

Имя «П.» широко используется и в повседневном языке, и в языке науки. Однако в истолковании содержания этого имени един­ства мнений нет. В одних случаях под П. имеют в виду все имена, включая и единичные, и пустые. К П. относят не только «столицу» и «европейскую реку», но и «столицу Белоруссии» и «самую большую реку Европы». В других случаях П. понимается как общее имя, отра­жающее предметы и явления в их общих и существенных признаках. Иногда П. отождествляется с содержанием общего имени, со смыс­лом, стоящим за таким именем.

Термин «П.» широко употреблялся в традиционной логике, кото­рая начинала с анализа П., затем переходила к исследованию сужде­ния, которое мыслилось составленным из П., и далее к описаниям умозаключения, составленного из суждений как более простых эле­ментов. В современной логике термины «П.», суждение и умозаключе­ние употребляются редко. Схема изложения логики «понятие -> суж­дение -> умозаключение» отброшена как устаревшая. Изложение со­временной логики начинается с логики высказываний, которая лежит в фундаменте всех иных логических систем и в которой простое высказывание не разлагается на составляющие его части.

ПОРОЧНЫЙ КРУГ— логическая ошибка в определении понятий и в доказательстве, суть которой заключается в том, что некоторое понятие определяется с помощью другого понятия, которое в свою очередь определяется через первое, или некоторый тезис доказывает­ся с помощью аргумента, истинность которого обосновывается с по­мощью доказываемого тезиса. Пример П. к. в определении: «Вращение есть движение вокруг собственной оси». Понятие «ось» само опреде­ляется через понятие «вращение» («ось — прямая, вокруг которой происходит вращение»). Частным случаем П.к. в определении поня­тий могут быть тавтологии, напр., «Демократ есть человек демократи­ческих убеждений». Примером П. к. в доказательстве могут служить многочисленные попытки математиков (до открытия Лобачевского) доказать независимость пятого постулата от других постулатов геометрии Евклида, использовавших при этом в качестве аргументов положения, эквивалентные доказываемому пятому постулату.

«ПОСЛЕ ЭТОГО ЗНАЧИТ ПО ПРИЧИНЕ ЭТОГО» (лат. post hoc ergo propter hoc)

— логическая ошибка, заключающаяся в том, что простую последовательность событий во времени принимают за их причинную связь. Напр., когда после появления кометы возникали какие-то несчастья, часто комету считали причиной несчастья; когда в трубке возникала пустота и вода в ней поднималась, то думали, что пустота есть причина поднятия воды и т. д. Данная ошибка лежит в основе многочисленных суеверий, легко возникающих в результате соединения во времени двух событий, никак не связан­ных друг с другом.

ПОСПЕШНОЕ ОБОБЩЕНИЕ— логическая ошибка в индуктив­ном выводе. Суть ее заключается в том, что, рассмотрев несколько частных случаев из какого-либо класса явлений, делают вывод обо всем классе. Напр.: 1 — простое число, 2 — простое число, 3 — простое число; следовательно, все натуральные числа — простые. Ошибка П.о. особенно часто совершается в повседневной жизни, когда люди по одному-двум случаям судят о целом классе.

ПРАВИЛО ВЫВОДА— правило, определяющее переход от посы­лок к следствиям. П. в. указывает, каким образом высказывания, ис­тинность которых известна, могут быть видоизменены, чтобы полу­чить новые истинные высказывания. Напр., правило отделе­ния устанавливает, что если истинны два высказывания, одно из которых имеет форму импликации, а другое является основанием (антецедентом) этой импликации, то и высказывание, являющееся следствием (консеквентом) импликации, истинно. Это правило, на­зываемое также правилом модус поненс, позволяет «отделить» след­ствие истинной импликации, при условии, что ее основание истинно. Скажем, от посылок «Если цирконий — металл, он электропроводен» и «Цирконий — металл» можно перейти к заключению «Цирконий электропроводен».

ПРАГМАТИКА— раздел семиотики, изучающий отношения между знаковыми системами и теми, кто воспринимает, интерпрети­рует и использует их. Для исследования прагматических свойств и отношений, существенных для адекватного восприятия и понимания текстов, чисто лингвистических и логических методов часто оказы­вается недостаточно и приходится прибегать также к методам пси­хологии, психолингвистики, этологии.

ПРЕВРАЩЕНИЕ (лат. obversio) в традиционной логике— вид непосредственного умозаключения, характеризующегося тем, что в исходных суждениях вида A, Е, I, О (см.: Суждение) предикат Р заменяется на не-Р (т. е. на его дополнение), и наоборот, и при этом качество суждения изменяется (утвердительное суждение преобра­зуется в отрицательное, и наоборот), а его общность (т. е. количество суждения) остается прежней. Так, из истинного суждения вида «Все S суть Р» путем его П. можно получить истинное суждение вида «Ни одно S не есть не-Р» (ср.: «Все тигры — хищные животные» и «Ни один тигр не является не-хищным животным»). Из истинного суждения вида «Ни одно S не есть Р» можно путем П. получить истинное суждение вида «Все S суть не-Р» (ср.: «Ни один кит не есть рыба» и «Все киты суть не-рыбы»). Из истинного суждения вида «Некоторые S суть Р» путем П. можно получить истинное суж­дение вида «Некоторые S не суть не-Р» (ср.: «Некоторые металлы являются жидкими» и «Некоторые металлы не являются не-жидкими»). Из истинного суждения вида «Некоторые S не суть Р» путем П. можно получить истинное суждение вида «Некоторые S есть не-Р» (ср.: «Некоторые учащиеся не являются отличниками» и «Неко­торые учащиеся являются не-отличниками»).

«ПРЕДВОСХИЩЕНИЕ ОСНОВАНИЯ» (лат. petitio principii)- ошиб­ка логическая в доказательстве, заключающаяся в том, что в качестве аргумента (основания), обосновывающего тезис, приводится поло­жение, которое хотя и не является заведомо ложным, однако нуж­дается в доказательстве. Так, социологическое учение англ. эконо­миста и священника Т. Р. Мальтуса (1766-1834) опиралось на два основных аргумента: население растет в геометрической прогрес­сии, в то время как средства к существованию возрастают лишь в арифметической прогрессии. Оба эти аргумента были недоказанны­ми, поэтому Мальтус совершал ошибку П. о. Ошибка стала явной, когда было показано, что население растет гораздо медленнее, чем предполагал Мальтус, а объем средств к существованию, напротив, возрастает намного быстрее.

ПРЕДИКАТ (от лат. praedicatum - сказанное) - языковое выра­жение, обозначающее какое-то свойство или отношение. П., указы­вающий на свойство отдельного предмета (напр., «быть зеленым»), называется одноместным. П., обозначающий отношение, назы­вается двухместным, трехместным и т. д., в зависимости от числа членов данного отношения («любит», «находится между» и т. д.).

В традиционной логике П. понимался только как свойство, преди­кативная связь означала, что предмету (субъекту) присущ опреде­ленный признак.

ПРИВЕДЕНИЕ К АБСУРДУ, или: Редукция к абсурду, приведение к нелепости (лат. reductio ad absurdum),

— рас­суждение, показывающее ошибочность какого-то положения путем выведения из него абсурда, т. е. противоречия. Если из высказывания А выводится как высказывание B, так и его отрицание, то верным является отрицание A. Напр., из высказывания «Треугольник — это окружность» вытекает как то, что треугольник имеет углы (так как быть треугольником значит иметь три угла), так и то, что у него нет углов (поскольку он окружность); следовательно, верным явля­ется не исходное высказывание, а его отрицание «Треугольник не является окружностью».

ПРИЧИННАЯ СВЯЗЬ

— физически необходимая связь между яв­лениями, при которой за одним из них всякий раз следует другое. Первое явление называется причиной, второе — действием или следствием.

ПРОПОЗИЦИОНАЛЬНАЯ СВЯЗКА- операция, позволяющая из данных суждений (высказываний) строить новые суждения (выс­казывания). В логике высказываний высказывания (формулы) рас­сматриваются лишь с точки зрения их истинности или ложности. Если A и В - к.-л. формулы (простые, элементарные или сложные, построенные из элементарных), то из них с помощью П. с. могут строиться новые формулы: А & В, AvB, A-> B, А = В, если А - формула, то ~А - также формула. Символы «&», «v», «->», «=», «~» выража­ют П. с., которые определяются на семантическом, содержательно-алгоритмическом уровне при помощи таблиц истинности. Эти П. с. соответственно называются: конъюнкцией, дизъюнкцией, импликаци­ей, эквиваленцией, отрицанием. Смысл П. с. в русском языке переда­ется при помощи следующих выражений:

конъюнкция - с помощью союзов «и», «а», «но», «хотя» и др.;

дизъюнкция (нестрогая) — с помощью выражений: «или», «или, или оба»;

импликация — с помощью выражений «если..., то», «влечет», «сле­дует» (ср.: «Если А, то В», «А влечет В», «Из А следует В»);

эквиваленция - с помощью выражений «эквивалентно», «равно­сильно», «тогда и только тогда», «если и только если»;

отрицание — с помощью выражений «не», «неверно, что».

ПРОТИВОПОЛОЖНОСТЬ ЛОГИЧЕСКАЯ

– вид отношения между противоположными понятиями или суждениями в традиционной логике. В отношении противоположности находятся такие несовмес­тимые понятия, объемы которых включаются в объем более широко­го, родового понятия, но не исчерпывают его полностью, напр. «белый — черный», «сладкий — горький», «высокий - низкий» и т. п. Если последнюю пару понятий отнести к людям, то класс «люди» можно разбить на три части: «высокие» — «среднего роста» — «низ­кие». Противоположные понятия «высокий» — «низкий» займут наи­более удаленные друг от друга части объема родового понятия, но не покроют его целиком.

В отношении противоположности находятся общеутверди­тельные и общеотрицательные суждения, говорящие об одном и том же классе предметов и об одном и том же свойстве, например: «Всякий человек добр» и «Ни один человек не добр». Такие суждения вместе не могут быть истинными, однако они оба могут оказаться ложными (как это имеет место в приведенном примере).

ПРОТИВОПОСТАВЛЕНИЕ ПРЕДИКАТУ- вид непосредственно­го умозаключения, в котором субъектом вывода является понятие, противоречащее предикату посылки, предикатом является субъект посылки, а связка изменяется на противоположную символически:

S есть Р.
не-Р не есть S.

П. п. представляет собой соединение превращения с обра­щением, поэтому при его выполнении следует сначала произвес­ти превращение посылки, а затем обратить получившееся суждение: превращаем «S есть Р», получаем «S не есть не-Р», затем обращаем последнее суждение и приходим к выводу «не-Р не есть S». Затруд­нения здесь носят чисто грамматический характер. Чтобы избежать их, следует формулировать связку в явном виде и фиксировать отрицания. Из общеутвердительного суждения следует общеотрица­тельный вывод; из общеотрицательного суждения следует частноутвердительный вывод; из частноотрицательного суждения следует частноутвердительный вывод; из частноутвердительного суждения нельзя получить вывод путем П. п.

ПРОТИВОРЕЧИЕ- два высказывания, из которых одно являет­ся отрицанием другого. Напр.: «Латунь - химический элемент» и «Латунь не является химическим элементом», «2 - простое число» и «2 не является простым числом». В одном из противоречащих выс­казываний что-то утверждается, в другом это же самое отрицается, причем утверждение и отрицание касаются одного и того же объек­та, взятого в одно и то же время и рассматриваемого в одном и том же отношении.

РАВЕНСТВО— отношение между знаковыми выражениями, обо­значающими один и тот же объект, когда все, что можно высказать на языке соответствующей теории об одном из них, можно выска­зать и о другом, и наоборот, и при этом получать истинные выска­зывания. Обозначаемые объекты могут быть построены различным способом, напр., один объект может быть представлен как «3–5», а другой как «20–5», но между ними может быть поставлен знак Р.

Отношение Р позволяет заменять одни и те же объекты, постро­енные различным образом, друг на друга в различных контекстах (правило подстановочности). Выражения (формулы), содержащие пре­дикат Р., могут содержать переменные, или параметры. Если такая формула является истинной при всех значениях переменных (пара­метров), то отношение Р называют тождеством. Если же она явля­ется истинной лишь при некоторых значениях, то ее называют урав­нением. Отношение Р обладает свойствами симметричности, тран­зитивности и рефлексивности.

РАВНОЗНАЧНОСТЬ (равносильность, эквивалентность)- от­ношение между высказываниями или формулами, когда они при­нимают одни и те же истинностные значения. Напр., при любых значениях элементарных высказываний формулы (A v B) и (B v A), (A v (A & В)) и A принимают одни и те же значения, т. е. если одна из них истинна, то и другая истинна, если одна из них ложна, то и другая также ложна. Если два высказывания A и В равнозначны, то формулы А -> В и B -> А будут тождественно истинными.

РАВНООБЪЕМНОСТЬ- отношение между понятиями, объемы которых совпадают. Напр., понятия «луна» и «естественный спутник Земли» совпадают по своему объему, в который входит только один предмет; понятия «человек» и «разумное существо, владеющее чле­нораздельной речью» равны по своему объему, т. к. обозначают один и тот же класс — людей.

РАЗДЕЛИТЕЛЬНОЕ СУЖДЕНИЕ- дизъюнктивное (от лат. disjunctio — разобщаю) сложное суждение, образованное из двух или большего числа суждений с помощью логической связки «или». Общая форма Р. с. имеет вид А1 v A2 v, ..., v An, где Аn — суждение (член дизъюнкции, альтернатива), a v — знак дизъюнкции. Суще­ствуют два вида Р. с.: строго разделительные и нестрого раздели­тельные. В строго разделительных суждениях связка «или», «либо» употребляется в строго разделительном смысле (см.: Дизъюнкция), т. е. когда члены дизъюнкции (альтернативы) в двучленном сужде­нии A1 v A2 несовместимы (одно из них является истинным, а дру­гое — ложным). Таково суждение: «Этот человек является виновным (A1) либо этот человек не является виновным (А2)». Естественно, что данный человек не может быть одновременно виновным и невиновным, имеет место лишь одна из альтернатив. В нестрого разделительных суждениях (см.: Дизъюнкция) альтернативы не яв­ляются несовместимыми. Таково суждение «Этот ученик является способным или он является прилежным». В этом суждении не ис­ключается, что ученик может быть одновременно способным и прилежным.

Р. с. в обычном языке формулируются чаще всего в сокращенной форме и имеют, напр., вид: «S есть Р1 или P2 или «Р1 или p2 принадлежит S». Так, суждение «Данный треугольник прямоуголь­ный или непрямоугольный» означает Р. с. «Данный треугольник пря­моугольный или данный треугольник непрямоугольный» Связка «либо» вместо связки «или» используется обычно в строго раздели­тельных суждениях.

РАЗДЕЛИТЕЛЬНО-КАТЕГОРИЧЕСКОЕ УМОЗАКЛЮЧЕНИЕ– умозаключение, в котором одна из посылок — разделительное суж­дение, а другая — категорическое. Р.-к. у. имеет два модуса: 1) модус утверждающе-отрицающий; 2) модус отрицающе-утверждающий. Простейшая форма модуса (1) имеет вид: S есть Р1 или p2 (первая посылка); S есть Р1 (вторая посылка); S не есть p2 (заключение). Такую форму имеет, напр., следующее умозаключение: «Жидкие кол­лоидные системы бывают эмульсиями либо золями. Данная жидкая коллоидная система является эмульсией. Данная жидкая коллоид­ная система не является золем». В таком умозаключении для обеспе­чения его правильности в разделительной посылке союз «или» («либо») должен употребляться в строго разделительном смысле (см.: Дизъюнкция).

Простейшая форма модуса (2) имеет вид: S есть Р1 или p2, S не есть р1; следовательно, S есть Р2. Пример:

Организмы бывают одноклеточными или многоклеточными.

Данный организм не является одноклеточным.

Данный организм является многоклеточным.

В таком умозаключении для обеспечения его правильности в пер­вой посылке должны быть перечислены все члены дизъюнкции (аль­тернативы).

РАЦИОНАЛЬНОСТЬ (от лат. ratio - разум)- относящееся к ра­зуму, обоснованность разумом, доступное разумному пониманию, в противоположность иррациональности как чему-то неразум­ному, недоступному разумному пониманию.

В методологии научного познания Р. понимается двояко. Чаще всего Р. истолковывается как соответствие законам разума — законам логики, методологическим нормам и правилам. То, что соот­ветствует логико-методологическим стандартам, — Р., то, что наруша­ет эти стандарты, — нерационально или даже иррационально. Иногда под Р. понимают целесообразность. То, что способствует достижению цели, — Р., то, что этому препятствует, — нерациональность.

СВОЙСТВО— характеристика, присущая вещам и явлениям, позволяющая отличать или отождествлять их. Каждому предмету присуще бесчисленное количество свойств, которые делятся на су­щественные и несущественные, необходимые и случайные, общие и специфические и т. д.

В логике С. называют то, что обозначается одноместным предика­том, напр.: «... есть человек», «... есть зеленый» и т. п. При постановке на пустое место имени к.-л. объекта мы получаем истинное или лож­ное высказывание: «Сократ есть человек», «Снег зеленый».

СВЯЗКА— в традиционной логике элемент простого суждения, соединяющий субъект и предикат. В повседневном языке С. обычно выражается словами «есть», «суть», «является» и т. п., напр.: «Узбеки являются жителями Средней Азии». В обыденной речи С. часто опус­кается и приведенное выше предложение обычно выглядит так: «Уз­беки живут в Средней Азии». Однако даже если С. не выражена ка­ким-то специальным словом, она обязательно присутствуют в суж­дении. Напр., два понятия «город» и «населенный пункт» образуют суждение только после того, как их соединит С. «Город есть неселен­ный пункт». Поэтому схематическое представление простого сужде­ния включает в себя три элемента — субъект, предикат и связку: «5 есть Р». С. может быть утвердительной или отрицательной («есть» или «не есть»). Именно этим определяется качество простого суждения.

В символической логике пропозициональными связками называ­ют логические союзы (операторы), с помощью которых из про­стых высказываний получают сложные высказывания. К ним обычно относят отрицание, конъюнкцию, дизъюнкцию, импликацию и т. п. Условия истинности сложных высказываний, содержащих пропозициональные связки, формулируются посредством таблиц истин­ности.

СЕМИОТИКА- общая теория знаковых систем, к числу кото­рых относятся как естественные языки, так и специальные язы­ки конкретных наук, искусственные языки, сигнальные систе­мы и т. п.

СИЛЛОГИЗМ (от греч. sillogismos) категорический- дедуктив­ное умозаключение, в котором из двух суждений, имеющих субъектно-предикатную форму («Все S суть Р», «Ни одно S не есть Р», «Некоторые 5 суть Р», «Некоторые 5 не есть Р»), следует новое суждение (заключение), имеющее также субъектно-предикатную форму (см.: Суждение). Примером С. может быть:

Все жидкости упруги. Ртуть - жидкость. (1)  
Ртуть упруга.  

В этом С. посылки стоят над чертой, а заключение - под чертой. Черта, отделяющая посылки от закл<

Последнее изменение этой страницы: 2016-07-23

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...