Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Задачи корреляционно-регрессионного анализа и моделирования




В соответствии с сущностью корреляционной связи ее изучение имеет две задачи:

 

Сумма квадратов в числителе — это дисперсия результативного признака у, объясненная связью с фактором х (факторами). Она вычисляется по индивидуальным данным, полученным для каждой единицы совокупности на основе уравнения регрессии, и называется дисперсией, объясненной уравнением регрессии.

Если уравнение выбрано неверно или сделана ошибка при расчете его параметров, то сумма квадратов в числителе может оказаться большей, чем в знаменателе, и отношение утратит тот смысл, который оно должно иметь, а именно: какова доля общей вариации результативного признака, объясняемая на основе выбранного уравнения связи его с факторным признаком (признаками). Чтобы избежать ошибочного результата, лучше вычислять корреляционное отношение по другой формуле (9.3), не столь наглядно выявляющей сущность показателя, но зато полностью гарантирующей от возможного искажения:

 

 

Важнейшее положение, которое следует теперь усвоить любому желающему правильно применять методы корреляционно-регрессионного анализа, состоит в интерпретации формул (9.2) и (9.3) и гласит.

Уравнение корреляционной связи измеряет зависимость между вариаций результативного признака и вариацией факторного признака (признаков). Меры тесноты связи измеряют долю вариации результативного признака, которая связана корреляционно с вариацией факторного признака (признаков).

Интерпретировать корреляционные показатели следует строго в терминах вариации (различий в пространстве) отклонений от средней величины. Если же задача исследования состоит в измерении связи не между вариацией двух признаков в совокупности, а между изменениями признаков объекта во времени, то метод корреляционно-регрессионного анализа требует значительного изменения (гл. 12).

Из вышеприведенного положения об интерпретации показателей корреляции следует, что нельзя трактовать корреляцию признаков как причинную связь их уровней.

Пример. Если бы все крестьяне области внесли под картофель одинаковую дозу удобрений, то вариация этой дозы была бы равна нулю, а следовательно, она абсолютно не могла бы влиять на вариацию урожайности картофеля. Параметры корреляции дозы удобрений с урожайностью будут тогда строго равны нулю. Но ведь и в этом случае уровень урожайности зависел бы от дозы удобрений — он был бы выше, чем без удобрений.

 

Итак, строго говоря, метод корреляционно-регрессионного анализа не может объяснить роли факторных признаков в создании результативного признака. Это очень серьезное ограничение метода, о котором не следует забывать.



Следующий общий вопрос — это уже рассмотренный в разделе о группировке вопрос о «чистоте» измерения влияния каждого отдельного факторного признака. Как отмечалось в главе 6, группировка совокупности по одному факторному признаку может отразить влияние именно данного фактора на результативный признак при условии, что все другие факторы не связаны с изучаемым, а случайные отклонения и ошибки взаимопогасились в большой совокупности. Если же изучаемый фактор связан с другими факторами, влияющими на результативный признак, будет получена не «чистая» характеристика влияния только одного фактора, а сложный комплекс, состоящий как из непосредственного влияния фактора, так и из его косвенных влияний, через его связь с другими факторами и их влияние на результативный признак. Данное положение полностью относится и к парной корреляционной связи.

 

Однако коренное отличие метода корреляционно-регрессионного анализа от аналитической группировки состоит в том, что корреляционно-регрессионный анализ позволяет разделить влияние комплекса факторных признаков, анализировать различные стороны сложной системы взаимосвязей. Если метод комбинированной аналитической группировки, как правило, не дает возможность анализировать более трех факторов, то корреляционный метод при объеме совокупности около 100 единиц позволяет вести анализ системы с 8— 10 факторами и разделить их влияние.

 

Наконец, развивающиеся на базе корреляционно-регрессионного анализа многомерные методы (метод главных компонент, факторный анализ) позволяют синтезировать влияние признаков (наблюдаемых факторов), выделяя из них непосредственно неучитываемые глубинные факторы (компоненты). Например, изучая корреляцию ряда признаков интенсификации сельскохозяйственного производства, таких, как фондообеспеченность, затраты труда на единицу площади, энергообеспеченность, внесение удобрений на единицу площади, плотность поголовья скота, можно синтезировать

их влияние на уровень продукции с единицы площади, или на производительность труда, получив обобщенный фактор «интенсификация производства», непосредственно неизмеримый.

Правильное применение и интерпретация результатов корреляционно-регрессионного анализа возможны лишь при понимании всех специфических черт, достоинств и ограничений метода. Поэтому рекомендуем вернуться к данному подразделу заново после изучения остальных разделов этой главы и после приобретения некоторой практики применения метода к решению различных задач.

Необходимо сказать и о других задачах, решаемых с помощью корреляционно-регрессионного метода, имеющих не формально математический, а содержательный характер.

1. Задача выделения важнейших факторов, влияющих на результативный признак (т.е. на вариацию его значений в совокупности). Эта задача решается в основном на базе мер тесноты связи признаков-факторов с результативным признаком.

2. Задача оценки хозяйственной деятельности по эффективности использования имеющихся факторов производства. Эта задача решается путем расчета для каждой единицы совокупности тех величин результативного признака, которые были бы получены при средней по совокупности эффективности использования факторов в сравнении их с фактическими результатами производства.

Последнее изменение этой страницы: 2016-07-28; просмотров: 877

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...