Если при изучении и измерении тенденции динамики колебания уровней играли лишь роль помех, «информационного шума», от которого следовало по возможности абстрагироваться, то в дальнейшем сама колеблемость становится предметом статистического исследования. Значение изучения колебаний уровней динамического ряда очевидно: колебания урожайности, продуктивности скота, производства мяса экономически нежелательны, так как потребность в продукции агрокомплекса постоянна. Эти колебания следует уменьшать, применяя прогрессивную технологию и другие меры. Напротив, сезонные колебания объемов производства зимней и летней обуви, одежды, мороженого, зонтиков, коньков необходимы и закономерны, так как спрос на эти товары тоже колеблется по сезонам и равномерное производство требует лишних затрат на хранение запасов. Регулирование рыночной экономики как со стороны государства, так и производителей в значительной мере состоит в регулировании колебаний экономических процессов.
Типы колебаний статистических показателей весьма разнообразны, но все же можно выделить три основных: пилообразную, или маятниковую, колеблемость, циклическую долгопериодическую и случайно распределенную по времени колеблемость. Их свойства и отличия друг от друга хорошо видны при графическом изображении (рис. 12.2).
Пилообразная, или маятниковая, колеблемость состоит в попеременных отклонениях уровней от тренда в одну и в другую сторону. Таковы автоколебания маятника. Подобные автоколебания можно наблюдать в динамике урожайности при невысоком уровне агротехники: высокий урожай при благоприятных условиях погоды выносит из почвы больше питательных веществ, чем образуется естественным путем за год; почва обедняется, что вызывает снижение следующего урожая ниже тренда, он выносит меньше питательных веществ, чем образуется за год; плодородие возрастает и т.д.
Циклическая долгопериодическая колеблемость свойственна, например, солнечной активности (10—11-летние циклы), а значит, и связанным с ней на Земле процессам — полярным
сияниям, грозовой деятельности, урожайности отдельных культур в ряде районов, некоторым заболеваниям людей, растений. Для этого типа характерны редкая смена знаков отклонений от тренда и кумулятивный (накапливающийся) эффект отклонения одного знака, который может тяжело отражаться на экономике. Зато колебания хорошо прогнозируются.
Случайно распределенная во времени колеблемость нерегулярная, хаотическая. Она может возникать при наложении (интерференции) множества колебаний с разными по длительности циклами или появиться в результате столь же хаотической колеблемости главной причины существования колебаний, например суммы осадков за летний период, температуры воздуха в среднем за месяц в разные годы.
Для определения типа колебаний применяются графическое изображение, метод «поворотных точек» М. Кендэла, вычисление коэффициентов автокорреляции отклонений от тренда. Эти методы будут рассмотрены ниже.
Основными показателями, характеризующими силу колеблемости уровней, выступают уже известные по гл. 5 показатели, характеризующие вариацию значений признака в пространственной совокупности. Однако вариация в пространстве и колеблемость во времени принципиально различны. Во-первых, различны их основные причины. Вариация значений признака у одновременно существующих единиц возникает из-за различий в условиях существования единиц совокупности. Например, разная урожайность картофеля в совхозах области в 2000 г. вызвана различиями в плодородии почв, в качестве семян, в агротехнике. А вот суммы эффективных температур за вегетационный период и осадков не являются причинами пространственной вариации, так как в одном и том же году на территории области эти факторы почти не варьируют. Напротив, главными причинами колебания урожайности картофеля в области за ряд лет как раз являются колебания метеорологических факторов, а качество почв колебаний почти не имеет. Что же касается общего прогресса агротехники, то он является причиной тренда, но не колеблемости.
Во-вторых, коренное отличие состоит в том, что значения варьирующего признака в пространственной совокупности можно считать в основном не зависимыми друг от друга, на-
против, уровни динамического ряда, как правило, являются зависимыми: это показатели развивающегося процесса, каждая стадия которого связана с предыдущими состояниями.
В-третьих, вариация в пространственной совокупности измеряется отклонениями индивидуальных значений признака от среднего значения, а колеблемость уровней динамического ряда измеряется не их отличиями от среднего уровня (эти отличия включают и тренд, и колебания), а отклонениями уровней от тренда.
Поэтому лучше использовать разные термины: различия признака в пространственной совокупности называть только вариацией, но не колебаниями: никто же не станет называть различия численности населения Москвы, Санкт-Петербурга, Киева и Ташкента «колебаниями числа жителей!» Отклонения уровней динамического ряда от тренда будем называть всегда колеблемостью. Колебания всегда происходят во времени, не может существовать колебаний вне времени, в фиксированный момент.
На основе качественного содержания понятия колеблемости строится и система ее показателей. Показателями силы колебаний уровней являются: амплитуда отклонений уровней отдельных периодов или моментов от тренда (по модулю), среднее абсолютное отклонение уровней от тренда (по модулю), среднее квадратическое отклонение уровней от тренда. Относительные меры колеблемости: относительное линейное отклонение от тренда и коэффициент колеблемости — аналоги коэффициента вариации.
Особенностью методики вычисления средних отклонений от тренда является необходимость учета потерь степеней свободы колебаний на величину, равную числу параметров уравнения тренда. Например, прямая линия имеет два параметра, и, как известно из геометрии, через любые две точки можно провести прямую линию. Значит, имея лишь два уровня, мы проведем линию тренда точно через эти два уровня, и никаких отклонений уровней от тренда не окажется, хотя на самом деле и эти два уровня включали колебания, не были свободны от действия факторов колеблемости. Парабола 2-го порядка пройдет точно через любые три точки и т.п.
Учитывая потерю степеней свободы, основные абсолютные показатели колеблемости вычисляются по формулам (12.33) и (12.34):
490
Небольшое превышение среднего квадратического отклонения над линейным указывает на отсутствие среди отклонений, резко выделяющихся по абсолютной величине.
491
Другой метод анализа типа колеблемости и поиска длины цикла основан на вычислении коэффициентов автокорреляции отклонений от тренда.
Автокорреляция - это корреляция между уровнями ряда или отклонениями от тренда, взятыми со сдвигом во времени: на 1-й период (год), на 2-й, на 3-й и т.д., поэтому говорят о коэффициентах автокорреляции разных порядков: первого, второго и т.д. Рассмотрим сначала коэффициент автокорреляции отклонений от тренда первого порядка.
Одна из основных формул для расчета коэффициента автокорреляции отклонений от тренда имеет вид:
Теперь обратимся к рис. 12.2. При маятниковой колеблемости все произведения в числителе будут отрицательными величинами и коэффициент автокорреляции первого порядка будет близок к -1. При долгопериодических циклах будут преобладать положительные произведения соседних отклонений, а смена знака происходит лишь дважды за цикл. Чем длиннее цикл, тем больше перевес положительных произведений в числителе и коэффициент автокорреляции первого порядка ближе к +1. При случайно распределенной во времени колеблемости знаки отклонений чередуются хаотически, число положительных произведений близко к числу отрицательных, ввиду чего коэффициент автокорреляции близок к нулю. Полученное значение говорит о наличии как случайно распреде-
ленных во времени колебаний, так и циклических. Коэффициент автокорреляции следующих порядков: II = -0,577; III = = -0,611; IV = -0,095; V = +0,376; VI = +0,404; VII = +0,044. Следовательно, противофаза цикла ближе всего к 3 годам (наибольший отрицательный коэффициент при сдвиге на 3 года), а совпадающие фазы ближе к 6 годам, что и дает длину цикла колебаний. Максимальные по абсолютной величине коэффициенты неблизки к единице. Это означает, что циклическая колеблемость смешана со значительной случайной колеблемостью. Таким образом, подробный автокорреляционный анализ в целом дал те же результаты, что и выводы по автокорреляции первого порядка.
Если динамический ряд достаточно длинен, можно поставить и решить задачу об изменении показателей колеблемости с течением времени. Для этого рассчитывают эти показатели по подпериодам, но длительностью не менее 9—11 лет, иначе измерения колеблемости ненадежны. Кроме того, можно рассчитывать показатели колеблемости скользящим способом, а затем провести их выравнивание, т.е. вычислить тренд показателей колеблемости. Это полезно для вывода о действенности мер, применявшихся для уменьшения колебаний урожайности и других нежелательных колебаний, а также для того, чтобы по тренду сделать прогноз ожидаемых в будущем размеров колебаний.
|