Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Глава 3. Глобальное химическое заражение




Химическое оружие обычно не рассматривается в качестве оружия конца света. Это связано с тем, что для глобального заражения атмосферы требуются очень большие количества ядовитого вещества, а также с тем, что это вещество или химически неустойчиво, или легко вымывается из атмосферы. Глобальное химическое заражение может произойти из-за внезапной резкой дегазации земных недр, например, вскипания газовых гидратов под морским дном. Однако основной вариант – извержение сверхвулкана с большим выбросом газов. Сам процесс накопления углекислого газа в земной атмосфере за счёт сжигания ископаемого топлива тоже может считаться частью «дегазации недр». Другие возможные причины – крупная авария на химическом производстве, результат деятельности генетически модифицированных организмов в биосфере, и, наконец, сознательное применение химического оружия. В научной фантастике рассматривался вариант выпадения ядовитых химических веществ из ядра кометы. Основным фактором, превращающим химическое оружие в глобальную угрозу, является единство земной атмосферы. Поэтому в этой главе мы рассмотрим и ряд других факторов, действие которых распространяется через атмосферу.

В связи с этим полезно посчитать, какие количества и каких газов могут полностью отравить земную атмосферу. При этом понятно, что газам и ядам гораздо проще противостоять с помощью противогазов и убежищ, чем радиации и биоагентам. Для равномерного заражения всей земли сильнейшим нервнопаралитическим газом VX потребовалось бы не менее 100 тыс. тонн этого реагента (если исходить из оценки одна смертельная доза на 1 кв. метр, то есть 200 мкг). При этом в первой мировой войне всего было использовано 120 тыс. тонн разных ОВ. Примерно столько же (94 тыс. тонн) было использовано гербицидов в войне во Вьетнаме. Современные мировые запасы отравляющих веществ оцениваются в 80 тыс. тонн, хотя точных данных по общемировым запасам нет. При этом понятно, что химическое оружие не было приоритетным направлением, и его произвели гораздо меньше, чем могли бы. Понятно также, что вопрос равномерного распределения (то есть доставки) далеко не прост. Газ VX держится в холодном климате очень долго, но при жаре разлагается за несколько дней. Однако теоретически возможно произвести и распространить миллионы тонн этого газа или подобного и создать глобальную угрозу. (Особенно упростится эта задача с развитием конструирования генно-модифицированных организмов.)

Летальная доза токсина ботулизма – около 0,1 мкг. (Это означает, что для уничтожения человечества хватило бы нескольких сот грамм), но он очень неустойчив во внешней среде.

Летальная доза диоксина – около 1 мкг (есть разные оценки), однако он может десятки лет сохраняться в среде и накапливаться в организмах. Утечка примерно 25 кг диоксина в Севесо в Италии вызвала заражение 17 кв. км. Отсюда можно заключить, что на полное заражение земли потребуется 500 000 – 1 000 000 тонн диоксина. Это равно объёму нескольких крупных нефтеналивных танкеров. Вероятно, промышленно развитая держава могла бы наработать такой объём за несколько лет.



Возможны также сценарии постепенного накопления в природной среде веществ, опасность которых вначале была неочевидна. Так было с фреонами, разрушающими озоновый слой, и диоксинами. Возможно также накопление многих химикатов, которые по отдельности не дают большой летальности, но вместе создают очень тяжёлый фон. Это обычно называется «неблагоприятная экологическая обстановка».

Другим вариантом является полное изменение химического состава атмосферы или утрата ею свойств пригодности для дыхания. Для этого нужен некий мощный источник химических веществ. Им может быть земной вулканизм, о чём речь пойдёт далее. Другие кандидаты: газовые гидраты на дне океана – отравление метаном, или водяной пар, если неким образом всю воду испарить (возможно при необратимом глобальном потеплении).

Функциональная структура химической катастрофы состоит в отравлении воздуха ядом или утрате атмосферой свойств способности поддерживать жизнь: то есть питать её кислородом, защищать от радиации, поддерживать нужный температурный режим. Химическая катастрофа угрожает земной биосфере даже больше, чем человеку, который может надеть противогаз, но без биосферы человек жить пока не может. Поскольку такая катастрофа носит относительно пассивный характер, то от неё относительно просто защитится в бункерах.

Маловероятные варианты:

· Отравление диоксидом углерода сверх того предела, при котором человек может дышать без скафандра (маловероятно, так как нет такого количества полезных ископаемых – только в случае некой природной катастрофы). Однако большое количество СО2 может вырваться и из вулканов. Например, Венера окружена атмосферой из СО2 в сто раз более плотной, чем земная атмосфера, и, вероятно, большая часть этого вещества выделилась из недр, и по некоторым предположениям, относительно недавно. С другой стороны, на Венере нет углеродного цикла, как на Земле.

· Формирование в результате восстановления оксида железа в недрах Земли значительного количества небиогенного кислорода, который может через 600 миллионов лет он полностью отравить атмосферу, как предполагает О.Г. Соротихин [Соротихин, Ушаков 2002]. Ухудшить этот сценарий может ситуация, если где-то под поверхностью уже скопились большие количества этого или другого газа, и затем они вырываются на поверхность в виде вулканического извержения. Впрочем, утверждения Соротихина о небиогенном кислороде подвергаются критике. Вырывающиеся на поверхность газы будут не только отравлять атмосферу. Они будут раскалены до тысячи градусов. И если произойдет массивный выброс газов (или воды), то он не только отравит атмосферу, но и стерилизует поверхность своим жаром. (Недавно была публикация о том, что глубоко под Землёй обнаружили «океаны воды», но на самом деле там речь идёт только о повышенной – 0,1 % – концентрации воды в породах[29].)

· Катастрофическое выделение метана из газовых гидратов в тундре и на морском дне, что не только усилит парниковые свойства атмосферы, но и, возможно, отравит её [Дядин, Гущин 1998].

· Другой вариант – выделение огромных количеств водорода из земных недр (есть предположения, что в центре земли его много – cм. Сывороткин В.Л. «Экологические аспекты дегазации земли» [Сывороткин 2002]). Это водород разрушает озоновый слой. Также возможно выделение огромных количеств нефти, если верна теория об абиогенном происхождении нефти и огромные количества углеводородов накопились глубоко в Земле. А бурение всё более глубоких скважин продолжается.

· Исчерпание кислорода в атмосфере в результате некого процесса, например, при окислении выделившегося из недр водорода. Таким процессом может быть внезапное выделение и сгорание большого количества горючего вещества. Или исчерпание кислорода в результате действия генетически модифицированных организмов, вышедших из-под контроля, например, вроде азотофиксирующих бактерий. Наконец, в результате прекращения фотосинтеза при одновременном продолжении сжигания минерального топлива. «Подсчитано, что весь кислород земной атмосферы (1200 триллионов тонн) зеленые растения производят по геологическим меркам почти мгновенно – за 3700 лет! Но если земная растительность погибнет – свободный кислород очень быстро исчезнет: он снова соединится с органическим веществом, войдет в состав углекислоты, а также окислит железо в горных породах» [Портнов 1999]. Мы имеем примерно миллион миллиардов тонн кислорода в атмосфере, плюс некоторое количество, растворенное в воде. Количество ископаемого топлива, которое мы окислили за всю историю или собираемся окислить, измеряется тысячами миллиардов тонн, то есть гораздо меньше. Но если мы подорвём способности биосферы к регенерации, а затем утратим биотехнологии, то медленное уменьшение уровня кислорода будет глобальной катастрофой. По некоторым данным, крупнейшее пермское вымирание было связано с резким падением уровня кислорода в воздухе по неизвестной причине [Leslie 1996]. Шкловский пишет об этой же проблеме: Как уже упоминалось выше, сейчас ежегодно добывается топливо, соответствующее примерно 5 млрд тонн каменного угля. Это топливо сжигается, т. Е. Соединяется с атмосферным кислородом. В результате получается углекислый газ плюс энергия, которая и утилизируется. Следовательно, этот варварский способ получения энергии сопровождается изъятием из земной атмосферы около 20 миллиардов тонн кислорода ежедневно. Много ли это или мало? Чтобы ответить на этот вопрос, оценим полное количество кислорода в земной атмосфере. Это очень легко сделать. Над каждым квадратным сантиметром земной поверхности имеется около 200 г кислорода. Так как поверхность земного шара приблизительно равна 500 миллионов км2 или 5·1018 см2, полное количество кислорода в земной атмосфере около 1021 г или 1015 т. Это означает, что для “поддержания” горения добываемого на Земле топлива земной атмосферы хватит на 50000 лет. Подчеркнем, что на Земле действуют и другие естественные причини, приводящие к связыванию свободного кислорода ее атмосферы. Как оказывается, сжигание топлива сейчас составляет несколько процентов от действия естественных факторов, приводящих к связыванию кислорода земной атмосферы. В итоге существенная часть кислорода свяжется через несколько тысяч лет. Только жизнедеятельность растений непрерывно пополняет эту убыль кислорода из атмосферы. И вот неразумное вмешательство людей в этот миллионами лет устоявшийся кислородный баланс Земли привело к тому, что он нарушается как бы “с двух концов”: уничтожая леса, мы уменьшили “поставку” кислорода в атмосферу по крайней мере на 10%, а сжигая его с топливом, увеличили скорость его ухода из атмосферы на несколько процентов. Если бы в атмосфере кислорода было сравнительно немного — последствия сказались бы очень скоро. Но так как кислорода в земной атмосфере запасено очень много — последствия скажутся только через несколько тысяч лет — характерное время установления динамического равновесия кислорода в атмосфере. Через этот промежуток времени, благодаря деятельности людей за последние несколько десятилетий, равновесное количество кислорода в земной атмосфере уменьшится примерно на 15 — 20%. Но ведь сейчас темп добычи ископаемого горючего и его сжигания продолжает расти! Если так будет продолжаться, то через сотню лет добыча угля и нефти увеличится в несколько десятков раз. А это приведет к катастрофическому уменьшению кислорода в земной атмосфере за какие-нибудь несколько сот лет! Заметим, что мировых ресурсов угля и нефти, особенно еще не разведанных, вполне достаточно для этого самоубийственного дела: не забудем, что каменный уголь — это бывшие растения! Такая “деятельность”, с позволения сказать, “разумных” существ приводит к непрерывному увеличению содержания углекислого газа СO2, что, помимо других вредных последствий, резко нарушает тепловой баланс Земли, о чем речь уже шла раньше» [Шкловский 1987]. Увеличение содержание СО2 увеличит активность растений и снизит активность животных, а также человека по сжиганию топлива, что образует отрицательную обратную связь по содержанию кислорода. Уже сейчас есть кондиционеры, повышающие содержание кислорода в комнате, так что люди смогут достаточно эффективно противостоять постепенному снижению кислорода.

· Падение кометы с большим количеством ядовитых газов.

· «Чёрный прилив» – отравление мирового океана разлитием большого количества нефти. Непосредственно оно не может убить людей, но может критически подорвать цепочки питания в биосфере и нарушить производство кислорода и поглощение углекислого газа (что ведёт к потеплению) и, в конечном счёте, перевести человечество в постапокалиптическую стадию. Возможны и другие варианты отравления мирового океана.

· Срыв атмосферы земли. Его могут вызвать: сильнейший взрыв, придающий большей части атмосферы вторую космическую скорость, солнечная вспышка или внезапное нагревание.

· Прокаливание атмосферы. Здесь я имею в виду не глобальное потепление, как комплексное постепенное явление, а кратковременное нагревание атмосферы до высоких температур в результате неких процессов. А. Портнов в статье «Как погибла жизнь на Марсе» [Портнов 1999] предполагает, что магнитные красные пески (маггемит) на марсе образовались в ходе бомбардировки планеты осколками её крупного спутника, что привело к нагреву поверхности до 800-1000 градусов, при котором и происходит формирование таких минералов. Аналогичные отложения им обнаружены в Якутии, где 35 млн. лет назад упал крупный астероид диаметром около 10 км и оставил Попигайский кратер (а также, возможно, вызвал очередное крупное вымирание живых существ). Возможно, что при неких высокоэнергетичских событиях могут образовываться огромные плотные высокотемпературные облака, которые распространяются по поверхности на тысячи километров. Примером их могут быть пирокластические облака при извержении современных вулканов, которые двигаются по поверхности земли или моря с большой скоростью на значительные расстояния и имеют внутри себя температуру порядка 1000 градусов. Поскольку такие облака непрозрачные, они медленно охлаждаются излучением. Другие возможные причины прокаливания – облучение (например, обломками астероида, выброшенными высоко в стратосферу и огненными шаром от взрыва, вспышка сверхновой) или очень тяжелый горячий газ (достаточно тяжёлый, чтобы не всплывать в воздухе – тяжелые углеводороды?)

· Автокаталитическая реакция, распространяющаяся по всей поверхности Земли аналогичная распространению льда-9 из романа К. Воннегута «Колыбель для кошки». Пока нет никаких оснований думать, что такая реакция возможна. (Хотя был случай, когда лекарство от СПИДа самопроизвольно образовало новый изомер, обладающий свойством приона – катализировать образование аналогичного изомера, который вытеснил правильную форму кристалла со всех фабрик в мире и остановил производство.) Или создание искусственного катализатора, крайне эффективно осуществляющего некую реакцию, продукты которой пагубны для всего живого. Распространение сверхкомпьютеров может сделать возможным искусственную разработку новых прионов – например, если будет разрешена задача свёртки белков.

· Ещё один возможный фактор риска – это заражение мирового океана поверхностно активными веществами. То есть веществами, влияющими на свойства поверхностей (как пенящие средства) и/или распространяющимися только по поверхностям, как тонкая нефтяная плёнка. Поскольку поверхность является двухмерным объёктом, то для полного её покрытия потребовалось бы гораздо меньше вещества, чем для отравления всего объёма океана. Это приведёт как к гибели морской флоры и фауны, так и (возможно) к ослаблению испарения с поверхности океанов, что повысит их температуру и приведёт к непредсказуемым климатическим последствиям. «Чёрный прилив», упоминавшийся выше, может привести к такому загрязнению, если произойдёт в глобальных масштабах, например, в случае прорыва подземного резервуара абиогенной нефти (если таковые существуют). Пример того, как это может случиться мы видим в 2010 году в Мексиканском заливе, где BP потеряло контроль над одной очень глубокой скважиной (её длина – порядка 11 км, что сравнимо с Кольской сверхглубокой скважиной. И это ещё раз напоминает нам о рисках сверхглубокого бурения.) Подробнее о разливе см. например: http://www.lenta.ru/conf/knizhnikov/ Всего в мире 357 подводных платформ для нефтедобычи, и они в принципе могут быть уязвимы во время военных действий. На них приходится 30% мировой нефтедобычи, то есть порядка 20 млн. баррелей в день.

Моя субъективная оценка вероятности глобального химического заражения – порядка 0,1 % на весь XXI век. Эта вероятность сейчас особенно мала, так как нет таких технологий, и она будет убывать, когда достаточно разовьются средства молекулярного нанотехнологического производства, которые смогут быстро очистить атмосферу или хотя бы защитить людей от заражения (если они сами не вызовут такую катастрофу).

Вывод: хотя теоретическая возможность отравления всей атмосферы газами имеется, она перекрывается возможностью создания токсических и эпидемиологических биоагентов. Любая организация или государство, которое может стремиться к отравлению всей биосферы, гораздо проще и дешевле может это сделать с помощью генетического конструирования. Более того, человек может пережить такое отравление в бункере или нейтрализовать его противоядиями, возможно, сделанными с помощью биотехнологий. Тем не менее, внезапное и значительное отравление воздуха может быть фактором, который создаст один из вариантов постапокалиптического мира.

***

Мы можем сделать определённые выводы относительно технологически достоверных рисков. Исходя из того, что некий риск технологически готов, не следует сбрасывать со счётов неизбежность дальнейшего технологического совершенствования в этой области, а также вероятность принципиальных открытий в этой области или связанных с ней. При этом важно понимать, что опасности, создаваемые новыми технологиями, всегда больше, чем опасности от прежних технологий, хотя бы потому что любые новые технологии могут потенцировать эффективность прежних технологий.

Далее мы рассматриваем развитие технологий, как самодостаточную тенденцию, которая не подвержена никаким внешним кризисам и рискам (а также не зависит от человеческой воли), то есть риски, возникновение которых кажется неизбежным, исходя из текущего характера развития технологий. Очевидна односторонность этой точки зрения. Позже мы рассмотрим то, как реализация тех или иных больших и малых рисков может повлиять на развитие технологий и их способность порождать новые риски.


 

Глава 4. Биологическое оружие

4.1 Общие соображения и основные сценарии

Фактически, большая часть технологий, необходимых для создания опасного биологического оружия, уже существует. Например, в конце 2007 года был предложен набор из базовых «кубиков» для генетического конструирования, распространяемый по принципам свободного программного обеспечения Genetic-Engineering Competitors Create Modular DNA Dev Kit[30]. Или, например: «В 2003 году ученые из Института альтернативной биологической энергии (США) под руководством знаменитого Крейга Вентера синтезировали из общедоступных реактивов вполне живой бактериофаг phi-X174 (безопасный для человека и животных вирус, который внедряется в бактерию Esherichia coli)… В 2002 году Экарт Уиммер из университета Стони Брук, штат Нью-Йорк, опубликовал работу по синтезу вируса полиомиелита из кусочков молекул. Синтетические вирусные частицы оказались совершенно неотличимы от естественных по всем параметрам – размеру, поведению, заразности. Причем слово «синтез» применимо к этой работе в самом буквальном смысле: зная нуклеотидную последовательность, ученые шаг за шагом построили вирус совершенно так же, как химики синтезируют сложные молекулы. Сам синтез занял у группы три года. А в 2003 году, через год после публикации этой работы, ученые из Института альтернативной биологической энергии потратили на синтез бактериофага из заказанных по каталогу реактивов всего две недели» [Юдина 2005].

Основная технологическая тенденция состоит в том, что био-оборудование постоянно дешевеет и распространяется по миру, одновременно знания о том, как использовать его во вред, возрастают и тоже распространяются. Постоянное удешевление и упрощение машин для секвенсирования и синтеза ДНК[31] (то есть считывания и создания генетического кода), делает возможным появление биохакеров. Прогресс в области био-оборудования измеряется скоростью порядка 2 раза в год – то есть технические характеристики возрастают, а оборудование дешевеет (кривая Карлсона[32]). Нет никаких оснований думать, что темп развития биотехнологий замедлится – отрасль полна новыми идеями и возможностями, а медицина создаёт постоянный спрос, поэтому можно смело утверждать, что через десять лет возможности биотехнологий по основным численным показателям (цена секвенсирования/синтеза ДНК, например) возрастут в 1000 раз. При этом происходит интенсивная демократизация биотехнологий – знание и оборудование идёт в массы. Если для компьютеров уже написано более 100 000 вирусов, то масштабы творчества биохакеров могут быть не меньшими.

Основной однофакторный сценарий биологической катастрофы – это распространение некого одного вируса или бактерии. Это распространение может происходить двояко – в виде эпидемии, передающейся от человека к человеку, или в виде заражения среды (воздуха, воды, пищи, почвы). Эпидемия гриппа испанки в 1918 г. затронула весь мир, кроме нескольких отдалённых островов. Вместе с тем, гипотеза о возможности эпидемии, убивающей всех людей, не учитывает двух обстоятельств. Первое, это то, что если все люди быстро гибнут, то некому разносить вирус. Второе, это то, что при всех эпидемиях обычно находятся люди, которые имеют врождённый иммунитет.

Возможен сценарий, когда по всему миру распространяется некое животное, являющееся носителем опасной бактерии. (Так в природе комарами распространяется малярия и чума крысами.)

Следующий вариант – это появление всеядного агента, который уничтожает всю биосферу, поражая любые живые клетки, или хотя бы только растения или животных некого критического вида.

Третий вариант – это бинарное бактериологическое оружие. Например, туберкулёз и СПИД являются хроническими болезнями, но при одновременном заражении человек сгорает за короткий срок. Один из страшных сценариев – СПИД, который распространяется также легко, как простуда.

Однако возможно и двухступенчатое биологическое оружие. На первом этапе некая производящая токсин бактерия незаметно распространяется по всему миру. На втором, по некому сигналу или таймеру, она начинает производить этот токсин сразу повсюду на Земле. Некоторые микроорганизмы ведут себя так при атаке на крупный организм.

Следующий вариант оружия конца света – это распыление в воздухе больших количеств спор сибирской язвы (или подобного агента) в защитной оболочке (а такие оболочки уже давно имеются для боевых штаммов). Этот вариант не требует саморазмножающегося болезнетворного агента. Заражение сибирской язвой очень длительное – один остров в Англии дезактивировали 50 лет, – и для заражения не требуется больших количеств реагента. 1 грамм может заразить целое здание. (Например, устранение последствий заражения одного здания в США, вызванного распылением спор сибирской язвы, находящихся всего лишь в одном конверте, заняло несколько лет и потребовало расходов в сотни миллионов долларов. Дешевле было бы снести это здание, но этого делать было нельзя, так как при этом споры могли бы заново распылиться. Это означает, что по способности к длительному заражению и нанесению экономического ущерба сибирская язва превосходит большинство радиоактивных веществ.)

Для полного заражения всей Земли необходимы тысячи тонн заражающего вещества. Но это число не является недостижимым – в СССР на полигоне в Аральском море было накоплено и брошено после распада СССР 200 тонн боевого штамма сибирской язвы. Его затем сожгли американцы. Однако, если из-за природной катастрофы (например, смерча) это вещество развеялось бы высоко в воздух, то оно могло бы накрыть целые страны. Понятно, что производство сибирской язвы дешевле производства аналогичных количеств полония или кобальта-60.

Следующий опасный вариант биооружия – это агент, изменяющий поведение людей. Вирус бешенства (агрессивность, укусы) и токсоплазма (утрата чувства страха) побуждают заражённых животных к поведению, которое способствует заражению других животных. Теоретически можно представить себе агент, который вызывал бы у людей наслаждение и стремление заражать им других. В кино этот вариант обыгран во множестве фильмов, где вирус превращает людей в вампиров. Но увы, в этой фантазии может быть доля правды. Тем более, если создавать такие вирусы будут шутники-хакеры, которые могут черпать в кино своё вдохновение.

Ещё один вариант биологической угрозы – это некая автокаталитическая молекула, способная неограниченно распространяться в природе. Коровье бешенство вызывается автокатализом особого белка, называемого прионом. Однако коровье бешенство распространяется только через мясо.

Отметим ещё вариант — распространение по всей биосфере некоего живого существа, вырабатывающего опасный токсин. Например, это могут быть генетически модифицированные дрожжи или плесень, вырабатывающие диоксин или токсин ботулизма.

В качестве средства противостояния этому предлагается создание всемирной иммунной системы – то есть распыление по всему миру множества генетически модифицированных бактерий, которые будут способны обезвреживать опасные реагенты. Однако здесь возможны новые опасности, например, «автоиммунные» реакции такого щита, то есть выход его из-под контроля.

Ещё одним видом опасности является так называемая «искусственная жизнь», то есть живые организмы, построенные с использованием другого кода ДНК или набора аминокислот. Они могут оказаться непобедимыми для иммунных систем современных живых организмов и «съесть биосферу».

Более фантастическим вариантом биологической опасности является занесение жизни из космоса. Шансы этого учитывались, когда астронавты вернулись с Луны – их долго держали в карантине.

4.2 Структура биологической катастрофы

Структура биологической катастрофы может быть весьма замысловатой. В качестве иллюстрации приведу несколько цитат об одной потенциально опасной ситуации. (Из неё мы увидим, как давно появились биологические угрозы, – а значит, насколько зрелой уже является эта опасность.)

«Генный кризис начался летом 1971 года. В это время молодой учёный Роберт Поллак в лаборатории Колд-Спринг-Харбор (на Лонг Айленде, штат Нью-Йорк, США), руководимой Д.Уотсоном, занимался проблемами рака. Круг научных интересов Поллака был широк. Он не только вёл исследования, но и преподавал студентам биологию и выступал в качестве ведущего радиопрограмм, посвящённых обсуждению возможных злоупотреблений в бионауках, в частности, зарождающейся тогда генной инженерии.

И вот Поллак узнаёт, что в другой лаборатории (в Пало-Альто, в Калифорнии) у Поля Берга планируются эксперименты по встраиванию ДНК онкогенного (могущего вызывать раковые заболевания) вируса SV 40 в геном кишечной палочки. Последствия таких опытов? А не возникнет ли эпидемия рака (было известно, что почти безвредный для обезьян, вирус SV 40 вызывает рак у мышей и хомяков)? Начинённые опасными генами бактерии, плодясь миллиардами за сутки, по мнению Поллака, могли бы представлять серьёзную опасность.

Поллак тут же позвонил П. Бергу по междугороднему телефону и спросил его, отдаёт ли он себе отчёт об опасности экспериментов? Не станут ли бактерии с генами вируса SV 40 биологической бомбой замедленного действия?

Этот телефонный разговор и был началом той тревоги, которая охватила молекулярных биологов. Берг отложил свои исследования. Он стал размышлять, может ли реально E.coli со встроенными в неё SV 40 вызывать рак? Мучительные раздумья мало что прояснили. Чёткого ответа не было из-за скудности сведений, имеющихся у специалистов в то время» [Чирков 1989].

«Некоторые доклады учёных (в Асиломаре, 1975) носили сенсационный характер. Так выяснилось, что в США в громадном масштабе был уже поставлен невольный эксперимент на человеке. Оказалось, что вакцина против полиомиелита заражена жизнеспособным вирусом SV 40. За 10 летний период, с 1953 по 1963 год эту заражённую вакцину привили примерно сотне миллионов детей. Причём проверка показала, что вирус SV 40 сохраняется в организме. Однако, к счастью, никакого увеличения частоты раковых заболеваний у этих детей выявлено не было» [Чирков 1989].

«Эдда Вест в своей статье "Полиомиелит", сообщает о связи вируса SV-40, которым заражались полиовакцины, с опухолями человека: "К концу 1996 г. десятки учёных сообщили об обнаружении вируса SV-40 в различных опухолях костей и мозга, которых стало больше на 30 % за последние 20 лет. Затем итальянские учёные обнаружили SV-40 в семенной жидкости 45 % и в крови 23 % здоровых доноров. Это означало, что SV-40, очевидно, передавался половым путём и от матери ребёнку. Вероятно, ныне этот вирус встроен в наш геном.»[33] другие опровергают эти данные. Однако отсюда видно, что развитие биотехнологий создаёт далеко неочевидные угрозы.

Уже сейчас биологическое оружие считается одним из самых дешёвых – стоимость причинения смерти им в расчете на одного человека несколько центов. С другой стороны, для производства современных реагентов вроде сибирской язвы в военных целях нужны большие защищённые лаборатории и полигоны. Оно может быть ещё дешевле, если учесть способность агента саморазмножаться. Теперь подержанный ДНК секвенсор можно купить за сумму от 200 долларов, и с каждым годом цена этих устройств падает в разы, а качество растёт. См. текст «Генетический хакер может создать биологическое оружие у себя дома»[34], рассказывающий о человеке, не имеющем познаний в области биологии, который берётся вывести – и выводит – генетически модифицированную флуоресцирующую колонию дрожжей за небольшой срок и небольшую сумму денег. И затем делается предположение, что почти также просто можно было бы вывести некий опасный вариант.

Уже сейчас создание биологической супербомбы в тысячи раз дешевле, чем создания ядерного оружия сравнимой поражающей силы. Когда распространятся дешевые технологии производства произвольных живых организмов с заранее заданными функциями, цена изготовления такого оружия может упасть до несколько сотен долларов.

Часто говорят, что биологическое оружие не годится в военном деле. Тем не менее у него может быть особое назначение – как оружие криптоударов в тылу врага и как универсальное оборонительное оружие – машина судного дня.

Ещё одна опасность – это бессмертные линии раковых клеток вроде Hela. В природе известно только два вида передающегося рака – у собак и тасманийских дьяволов. Причём у собак он не смертелен, а у дьяволов приводит к полной гибели популяции. Про Hela известно, что она очень сильно заразила другие клеточные линии и что в процессе её 50-летнего исследования произошла определённая эволюция и приспособление этой клеточной линии к жизни in vitro и, возможно, к размножению в разных тканях.

4.3 «Саморазмножающейся» синтезатор ДНК

Биотехнологии могут потенцировать сами себя – то есть возможно возникновение промежуточных биологических форм, которые упрощают написание и выращивание новых вирусов. Например, это может быть культура бактерий, которая непосредственно переводит последовательность электрических сигналов в цепочку ДНК, или, наоборот, считывает ДНК и превращает эту информацию в цепочку вспышек света, которые может считывать компьютер. Само распространение такого устройства, которое можно назвать «бион», вместе с библиотекой генетических кодов (в цифровом виде) основных вирусов и белков было бы катастрофой.

4.4 Множественный биологический удар

Хотя распространение одной эпидемии, скорее всего, можно остановить, но эпидемию, вызванную несколькими десятками видами разнородных вирусов и бактерий, вышедших из-под контроля одновременно во многих местах земного шара, остановить невозможно даже технически, потому что в человека невозможно одновременно ввести несколько десятков разных вакцин и антибиотиков – он умрёт. Если вирус с 50 % летальностью был бы просто очень большой катастрофой, то 30 разнородных вирусов и бактерий с 50 % летальностью означали бы гарантированное истребление всех, кто не спрятался в бункеры. (аналогичный результат может быть от 100 разных организмов с 10 % летальностью.)

Множественный удар мог бы быть и мощнейшим средством ведения биологической войны, и «оружием судного дня». Но он может произойти и сам по себе, если одновременно произойдёт множество актов распространения биологических агентов – даже и случайных, например, в ходе активного «соревнования» биохакеров. Даже несколько по отдельности несмертельных агентов могут настолько ослабить иммунную систему человека, что дальнейшее его выживание станет маловероятным.

Именно возможность множественного применения биологического оружия делает его одним из самых значительных факторов глобального риска.

4.5 Биологические средства доставки

Чтобы представлять угрозу человечеству, биологическое оружие должно быть не только смертельным, но и заразным и легко распространяющимся. Генетические технологии дают огромные возможности не только для создания летального оружия, но и для создания способов его доставки. Не нужно обладать великой фантазией, чтобы представить себе генетически модифицированного малярийного комара, который может жить в любой среде и с огромной скоростью распространиться по всей планете, вводя при укусах некий биоагент. Или вошь. Или саранчу, заодно поедающую всё живое и распыляющюю споры сибирской язвы. Но у будущих биоконструкторов будет гораздо больше фантазии.

Однако и бактериологическую войну можно пережить в убежище, хотя заражение от неё может быть более длительным, чем радиоактивное. Кроме того, переход на «механические тела», загрузка сознания в компьютер и освоение нанотехнологий резко снижают уязвимость «человека» к любым биологическим ядам и агентам, однако сделают его уязвимым к другим саморазмножающимся агентам, таким как компьютерные вирусы и нанороботы.

В фантастике распространен образ атаки мутантов на последний человеческий бункер. Обычная радиация не способна порождать агрессивных мутантов. С другой стороны, в природе существует вирус бешенства (Neuroiyctes rabid), который влияет на поведение животных так, что они начинают его более активно распространять (укусами). Нетрудно представить себе более продвинутое изделие генно-инженерной техники, которое превращает любое животное в существо, агрессивно настроенное против человека. Сама фантастичность такого проекта может быть стимулом к его реализации, поскольку современная культура пропитана идеями про вампиров и зомби, возникающих в результате опытов в лабораториях (например, недавний фильм «Обитель зла»– «Resident Evil»). Иначе говоря, идея изготовить зомби-вирус могла бы быть привлекательным вызовом для биохакера. При этом заражённые люди и животные обладали бы достаточным умом и техническими средствами, чтобы взломать разные виды защиты.

Похожий сюжет был с терактами 11 сентября, когда выяснилось, что голливудские фильмы были не фантастическими видениями, а самосбывающимися пророчествами. Иначе говоря, культура способна превратить крайне маловероятный сценарий в важную цель.

4.6 Вероятность применения биологического оружия и её распределение во времени

Я оцениваю вероятность того, что биотехнологии приведут к вымиранию человечества (в условиях, когда их эффект не перекрывается другими технологиями) в десятки процентов. Эта оценка основана на предположении о неизбежном широком распространении очень дешевых устройств, позволяющих создавать множество разнообразных биологических агентов, то есть на предположении о столь же широком распространении биопринтеров, как сейчас обычных компьютеров.

Перечислю свойства опасного биопринтера (дешёвой минилаборатории) ещё раз:

1) неизбежность возникновения,

2) дешевизна,

3) широкая распространённость,

4) неконтролируемость властями,

5) способность осуществлять разработку принципиально новых биоагентов,

6) простота применения,

7) разнообразие создаваемых объектов,

8) привлекательность как устройства для производства оружия (в духе вирусов индивидуального наведения) и наркотиков.

9) способность к саморепликации ключевых элементов, основанная на их биологической природе.

Последнее изменение этой страницы: 2016-06-08; просмотров: 657

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...