Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Предел произведения функции на постоянную величину

Постоянный коэффициент можно выносить за знак предела:

Предел произведения

Предел произведения двух функций равен произведению пределов этих функций (при условии, что последние существуют):

Расширенное правило произведения

Предел частного

Предел частного двух функций равен отношению пределов этих функций при условии, что предел знаменателя не равен нулю:

Предел степенной функции

где степень p - действительное число. В частности,

Если f ( x ) = x, то

Предел показательной функции

где основание a > 0.

Предел логарифмической функции

где основание a > 0.

Теорема "о двух милиционерах"

Предположим, что для всех x близких к a, за исключением, быть может, самой точки x = a. Тогда, если

то

То есть функция f (x) остается "зажатой" между двумя другими функциями, стремящимися к одному и тому же пределу L.

6)

Пусть на некотором числовом множестве задана числовая функция и число — предельная точка области определения . Существуют различные определения для односторонних пределов функции в точке , но все они эквивалентны.

Односторонний предел по Гейне

  • Число называется правосторонним пределом (правым пределом, пределом справа) функции в точке , если для всякой последовательности , состоящей из точек, больших числа , которая сама сходится к числу , соответствующая последовательность значений функции сходится к числу .

  • Число называется левосторонним пределом (левым пределом, пределом слева) функции в точке , если для всякой последовательности , состоящей из точек, меньших числа , которая сама сходится к числу , соответствующая последовательность значений функции сходится к числу .[1]

Односторонний предел по Коши

  • Число называется правосторонним пределом (правым пределом, пределом справа) функции в точке , если для всякого положительного числа отыщется отвечающее ему положительное число такое, что для всех точек из интервала справедливо неравенство .

  • Число называется левосторонним пределом (левым пределом, пределом слева) функции в точке , если для всякого положительного числа отыщется отвечающее ему положительное число , такое, что для всех точек из интервала справедливо неравенство .[1]

ε-δ определение непрерывности в точки

Пусть и .

Функция непрерывна в точке , если для любого существует такое, что для любого

Функция непрерывна на множестве , если она непрерывна в каждой точке данного множества.

В этом случае говорят, что функция класса и пишут: или, подробнее,

Точки разрыва

Если условие, входящее в определение непрерывности функции в некоторой точке, нарушается, то говорят, что рассматриваемая функция терпит в данной точке разрыв. Другими словами, если — значение функции в точке , то предел такой функции (если он существует) не совпадает с . На языке окрестностей условие разрывности функции в точке получается отрицанием условия непрерывности рассматриваемой функции в данной точке, а именно: существует такая окрестность точки области значений функции , что как бы мы близко не подходили к точке области определения функции , всегда найдутся такие точки, чьи образы будут за пределами окрестности точки .

Устранимые точки разрыва

Если предел функции существует, но он не совпадает со значением функции в данной точке:

тогда точка называется точкой устранимого разрыва функции (в комплексном анализе — устранимая особая точка).

Если «поправить» функцию в точке устранимого разрыва и положить , то получится функция, непрерывная в данной точке. Такая операция над функцией называется доопределением фукции до непрерывной или доопределением фукции по непрерывности, что и обосновывает название точки, как точки устранимого разрыва.

7)

Последнее изменение этой страницы: 2016-06-08

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...