Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Взаимодействие и синхронизация процессов и потоков

В мультипрограммных однопроцессорных системах процессы чередуются, обеспечивая эффективное выполнение программ. В многопроцессорных системах возможно не только чередование, но и перекрытие процессов. Обе эти технологии, которые можно рассматривать как примеры параллельных вычислений, порождают одинаковые проблемы. Выполнение процессов и потоков в мультипрограммной среде всегда имеет асинхронный характер – невозможно предсказать относительную скорость выполнения процессов. Момент прерывания потоков, время нахождения их в очередях к разделяемым ресурсам, порядок выбора потоков для выполнения – все эти события являются результатом стечения многих обстоятельств и являются случайными, это справедливо как по отношению к потокам одного процесса, выполняющим общий программный код, так и по отношению к потокам разных процессов, каждый из которых выполняет собственную программу.

Способы взаимодействия процессов (потоков) можно классифицировать по степени осведомленности одного процесса о существовании другого [10].

  1. Процессы не осведомлены о наличии друг друга (например, процессы разных заданий одного или различных пользователей). Это независимые процессы, не предназначенные для совместной работы. Хотя эти процессы и не работают совместно, ОС должна решать вопросы конкурентного использования ресурсов. Например, два независимых приложения могут затребовать доступ к одному и тому же диску или принтеру. ОС должна регулировать такие обращения.
  2. Процессы косвенно осведомлены о наличии друг друга (например, процессы одного задания). Эти процессы не обязательно должны быть осведомлены о наличии друг друга с точностью до идентификатора процесса, однако они разделяют доступ к некоторому объекту, например, буферу ввода-вывода, файлу или БД. Такие процессы демонстрируют сотрудничество при разделении общего объекта.
  3. Процессы непосредственно осведомлены о наличии друг друга (например, процессы, работающие последовательно или поочередно в рамках одного задания). Такие процессы способны общаться один с другим с использованием идентификаторов процессов и изначально созданы для совместной работы. Эти процессы также демонстрируют сотрудничество при работе.

Таким образом, потенциальные проблемы, связанные с взаимодействием и синхронизацией процессов и потоков, могут быть представлены следующей таблицей.

Степень осведомленности Взаимосвязь Влияние одного процесса на другой Потенциальные проблемы
Процессы не осведомлены друг о друге Конкуренция
  • Результат работы одного процесса не зависит от действий других.
  • Возможно влияние одного процесса на время работы другого
  • Взаимоисключения
  • Взаимоблокировки
  • Голодание
Процессы косвенно осведомлены о наличии друг друга Сотрудничество с использованием разделения
  • Результат работы одного процесса может зависеть от информации, полученной от других.
  • Возможно влияние одного процесса на время работы другого
  • Взаимоисключения
  • Взаимоблокировки
  • Голодание
  • Синхронизация
Процессы непосредственно осведомлены о наличии друг друга Сотрудничество с использованием связи
  • Результат работы одного процесса зависит от информации, полученной от других процессов.
  • Возможно влияние одного процесса на время работы другого
  • Взаимоблокировки (расходуемые ресурсы)
  • Голодание

При необходимости использовать один и тот же ресурс параллельные процессы вступают в конфликт (конкурируют) друг с другом. Каждый из процессов не подозревает о наличии остальных и не повергается никакому воздействию с их стороны. Отсюда следует, что каждый процесс не должен изменять состояние любого ресурса, с которым он работает. Примерами таких ресурсов могут быть устройства ввода-вывода, память, процессорное время, часы.

Между конкурирующими процессами не происходит никакого обмена информацией. Однако выполнение одного процесса может повлиять на поведение конкурирующего процесса. Это может, например, выразиться в замедлении работы одного процесса, если ОС выделит ресурс другому процессу, поскольку первый процесс будет ждать завершения работы с этим ресурсом. В предельном случае блокированный процесс может никогда не получить доступ к нужному ресурсу и, следовательно, никогда не сможет завершиться.

В случае конкурирующих процессов (потоков) возможно возникновение трех проблем. Первая из них – необходимость взаимных исключений (mutual exclusion). Предположим, что два или большее количество процессов требуют доступ к одному неразделяемому ресурсу, как например принтер (рис. 5.12). О таком ресурсе будем говорить как о критическом ресурсе, а о части программы, которая его использует, – как о критическом разделе (critical section) программы. Крайне важно, чтобы в критической ситуации в любой момент могла находиться только одна программа. Например, во время печати файла требуется, чтобы отдельный процесс имел полный контроль над принтером, иначе на бумаге можно получить чередование строк двух файлов.


Рис. 5.12. Критическая секция

Осуществление взаимных исключений создает две дополнительные проблемы. Одна из них – взаимоблокировки (deadlock) или тупики. Рассмотрим, например, два процесса – P1 и P2, и два ресурса – R1 и R2. Предположим, что каждому процессу для выполнения части своих функций требуется доступ к общим ресурсам. Тогда возможно возникновение следующей ситуации: ОС выделяет ресурс R1 процессу Р2, а ресурс R2 – процессу Р1. В результате каждый процесс ожидает получения одного из двух ресурсов. При этом ни один из них не освобождает уже имеющийся ресурс, ожидая получения второго ресурса для выполнения функций, требующих наличие двух ресурсов. В результате процессы оказываются взаимно заблокированными.

Очень удобно моделировать условия возникновения тупиков, используя направленные графы [17] (предложено Holt, 1972). Графы имеют 2 вида узлов: процессы-кружочки и ресурсы-квадратики. Ребро, направленное от квадрата (ресурса) к кружку (процессу), означает, что ресурс был запрошен, получен и используется. В нашем примере это будет изображено так, как показано на рис. 5.13 а).

Ребро, направленное от процесса (кружка) к ресурсу (квадрату), означает, что процесс в данный момент заблокирован и находится в состоянии ожидания доступа к этому ресурсу. В нашем примере граф надо достроить, как показано на рис. 5.13 б) или в). Цикл в графе означает наличие взаимной блокировки процессов.

Существует еще одна проблема у конкурирующих процессов – голодание. Предположим, что имеется 3 процесса ( Р1, Р2, Р3 ), каждому из которых периодически требуется доступ к ресурсам R. Представим ситуацию, в которой Р1 обладает ресурсом, а Р2 и Р3 приостановлены в ожидании освобождения ресурса R. После выхода Р1 из критического раздела доступ к ресурсу будет получен одним из процессов Р2 или Р3.


Рис. 5.13. Тупиковая ситуация

Пусть ОС предоставила доступ к ресурсу процессу Р3. Пока он работает с ресурсом, доступ к ресурсу вновь требуется процессу Р1. В результате по освобождении ресурса R процессом Р3 может оказаться, что ОС вновь предоставит доступ к ресурсу процессу Р1. Тем временем процессу Р3 вновь требуется доступ к ресурсу R. Таким образом, теоретически возможна ситуация, в которой процесс Р2 никогда не получит доступ к требуемому ему ресурсу, несмотря на то, что никакой взаимной блокировки в данном случае нет.

Рассмотрим случай сотрудничества с использованием разделения. Этот случай охватывает процессы (потоки), взаимодействующие с другими процессами (потоками), без наличия явной информации о них. Например, несколько потоков могут обращаться к разделяемым переменным (глобальным) или совместно используемым файлам или базам данных. Поскольку данные хранятся в ресурсах (устройствах памяти), в этом случае также возможны проблемы взаимоблокировок, взаимоисключения и голодания. Единственное отличие в том, что доступ к данным может осуществляться в двух режимах – чтения и записи, и взаимоисключающими должны быть только операции записи.

Однако в этом случае вносится новое требование синхронизации процессов для обеспечения согласованности данных.

Пусть имеются два процесса, представленные последовательностью неделимых (атомарных) операций:

P: a; b; c; и Q: d; e; f;

где a, b, c, d, e, f – атомарные операции.

При последовательном выполнении активностей мы получаем следующую последовательность атомарных действий:

PQ: a b c d e f

Что произойдет при исполнении этих процессов псевдопараллельно, в режиме разделения времени? Процессы могут расслоиться на неделимые операции с различным их чередованием, то есть может произойти то, что на английском языке принято называть словом interleaving. Возможные варианты чередования:

а b c d e fa b d c e fa b d e c fa b d e f ca d b c e f......d e f a b c

В данном случае атомарные операции активностей могут чередоваться всевозможными способами с сохранением своего порядка расположения внутри процессов. Так как псевдопараллельное выполнение двух процессов приводит к чередованию их неделимых операций, результат псевдопараллельного выполнения может отличаться от результата последовательного выполнения. Пусть есть два процесса P и Q, состоящие из двух атомарных операций:

P: x=2; y=x-1; Q: x=3; y=x+1

Что мы получим в результате их псевдопараллельного выполнения, если переменные x и y являются общими для процессов? Легко видеть, что возможны четыре разных набора значений для пары (x, y): (3, 4), (2, 1), (2, 3) и (3, 2). Будем говорить, что набор процессов детерминирован, если всякий раз при псевдопараллельном исполнении для одного и того же набора входных данных он дает одинаковые выходные данные. В противном случае он недетерминирован. Выше приведен пример недетерминированного набора программ. Понятно, что детерминированный набор активностей можно безбоязненно выполнять в режиме разделения времени. Для недетерминированного набора такое исполнение нежелательно.

Можно ли до получения результатов, заранее, определить, является ли набор активностей детерминированным или нет? Для этого существуют достаточные условия Бернстайна [17]. Изложим их применительно к программам с разделяемыми переменными.

Введем наборы входных и выходных переменных программы. Для каждой атомарной операции наборы входных и выходных переменных – это наборы переменных, которые атомарная операция считывает и записывает. Набор входных переменных программы R(P) ( R от слова read ) суть объединение наборов входных переменных для всех ее неделимых действий. Аналогично, набор выходных переменных программы W(P) ( W от слова write ) суть объединение наборов выходных переменных для всех ее неделимых действий. Например, для программы

P: x = u + v; y = x * w;

получаем R(P) = {u, v, x, w}, W(P) = {x, y}. Заметим, что переменная x присутствует как в R(P), так и в W(P).

Теперь сформулируем условия Бернстайна.

Если для двух данных процессов P и Q:

  • пересечение W(P) и W(Q) пусто,
  • пересечение W(P) с R(Q) пусто,
  • пересечение R(P) и W(Q) пусто,

тогда выполнение P и Q детерминировано.

Если эти условия не соблюдены, возможно, что параллельное выполнение P и Q детерминировано, но возможно, что и нет. Случай двух процессов естественным образом обобщается на их большее количество.

Условия Бернстайна информативны, но слишком жестки. По сути дела, они требуют практически невзаимодействующих процессов. Однако хотелось бы, чтобы детерминированный набор образовывал процессы, совместно использующие информацию и обменивающиеся ею. Для этого нам необходимо ограничить число возможных чередований атомарных операций, исключив некоторые чередования с помощью механизмов синхронизации выполнения программ и обеспечив тем самым упорядоченный доступ программ к некоторым данным.

Про недетерминированный набор программ говорят, что он имеет race condition (состояние гонки, состояние состязания). В приведенном выше примере процессы состязаются за вычисление значений переменных x и y.

Задачу упорядоченного доступа к разделяемым данным (устранение race condition), в том случае, если нам не важна его очередность, можно решить, если обеспечить каждому процессу эксклюзивное право доступа к этим данным. Каждый процесс, обращающийся к разделяемым ресурсам, исключает для всех других процессов возможность одновременного с ним общения с этими ресурсами, если это может привести к недетерминированному поведению набора процессов. Такой прием называется взаимоисключением (mutual exclusion). Если очередность доступа к разделяемым ресурсам важна для получения правильных результатов, то одними взаимоисключениями уже не обойтись.

При сотрудничестве с использованием связи различные процессы принимают участие в общей работе, которая их объединяет. Связь обеспечивает возможность синхронизации, или координации, различных действий процессов. Обычно можно считать, что связь состоит из сообщений определенного вида. Примитивы для отправки и получения сообщений могут быть предоставлены языком программирования или ядром операционной системы.

Поскольку в процессе передачи сообщений не происходит какого-либо совместного использования ресурсов, взаимоисключения не требуется, хотя проблемы взаимоблокировок и голодания остаются актуальными. В качестве примера взаимоблокировки можно привести ситуацию, при которой каждый из двух процессов заблокирован ожиданием сообщения от другого процесса. Голодание можно проиллюстрировать следующим образом. Пусть есть три процесса Р1, Р2, Р3, а те, в свою очередь, пытаются связаться с процессом Р1. Может возникнуть ситуация, когда Р1 и Р2 постоянно связываются друг с другом, а Р3 остается заблокированным, ожидая связи с процессом Р1.

Методы взаимоисключений

Организация взаимоисключения для критических участков, конечно, позволит избежать возникновения race condition, но не является достаточной для правильной и эффективной параллельной работы кооперативных процессов. Сформулируем пять условий, которые должны выполняться для хорошего программного алгоритма организации взаимодействия процессов, имеющих критические участки, если они могут проходить их в произвольном порядке [10, 17].

  1. Задача должна быть решена чисто программным способом на обычной машине, не имеющей специальных команд взаимоисключения. При этом предполагается, что основные инструкции языка программирования (такие примитивные инструкции, как load, store, test) являются атомарными операциями.
  2. Не должно существовать никаких предположений об относительных скоростях выполняющихся процессов или числе процессоров, на которых они исполняются.
  3. Если процесс Pi исполняется в своем критическом участке, то не существует никаких других процессов, которые исполняются в своих соответствующих критических секциях. Это условие получило название условия взаимоисключения (mutual exclusion).
  4. Процессы, которые находятся вне своих критических участков и не собираются входить в них, не могут препятствовать другим процессам входить в их собственные критические участки. Если нет процессов в критических секциях и имеются процессы, желающие войти в них, то только те процессы, которые не исполняются в remainder section, должны принимать решение о том, какой процесс войдет в свою критическую секцию. Такое решение не должно приниматься бесконечно долго. Это условие получило название условия прогресса (progress).
  5. Hе должно возникать бесконечного ожидания для входа процесса в свой критический участок. От того момента, когда процесс запросил разрешение на вход в критическую секцию, и до того момента, когда он это разрешение получил, другие процессы могут пройти через свои критические участки лишь ограниченное число раз. Это условие получило название условия ограниченного ожидания (bound waiting).

Надо заметить, что описание соответствующего алгоритма в нашем случае означает описание способа организации пролога и эпилога для критической секции. Критический участок должен сопровождаться прологом и эпилогом, которые не имеют отношения к активности одиночного процесса. Во время выполнения пролога процесс должен, в частности, получить разрешение на вход в критический участок, а во время выполнения эпилога – сообщить другим процессам, что он покинул критическую секцию.

Наиболее простым решением поставленной задачи является организация пролога и эпилога запретом на прерывания:

while (some condition) { запретить все прерывания critical section разрешить все прерывания remainder section }

Поскольку выход процесса из состояния исполнения без его завершения осуществляется по прерыванию, внутри критической секции никто не может вмешаться в его работу. Если прерывания запрещены, невозможно прерывание по таймеру. Отключение прерываний исключает передачу процессора другому процессу. Таким образом, при запрете прерываний процесс может считаться и сохранять совместно используемые данные, не опасаясь вмешательства другого процесса. Однако этот способ практически не применяется, так как опасно доверять управление системой пользовательскому процессу – он может надолго занять процессор, а результат сбоя в критической ситуации может привести к краху ОС и, следовательно, всей системы. Кроме того, нужного результата можно не достичь в многопроцессорной системе, так как запрет прерываний будет относиться только к одному процессу, остальные процессоры продолжают работу и сохраняют доступ к разделенным данным.

Тем не менее, запрет и разрешение прерываний часто применяются как пролог и эпилог к критическим секциям внутри самой операционной системы, например, при обновлении содержимого PSW (Programming Status Word).

Для синхронизации потоков одного процесса программист может использовать глобальные блокирующие переменные. С этими переменными, к которым все потоки процесса имеют прямой доступ, программист работает, не обращаясь к системным вызовам ОС.

Каждому набору критических данных ставится в соответствие двоичная переменная. Поток может войти в критическую секцию только тогда, когда значение этой переменной-замка равно 0, одновременно изменяя ее значение на 1 – закрывая замок. При выходе из критической секции поток сбрасывает ее значение в 0 – замок открывается.

shared int lock = 0;while (some condition) { while(lock); lock = 1; critical section lock = 0; remainder section }

К сожалению, внимательное изучение показывает, что такое решение не удовлетворяет условию взаимоисключения, так как действие while(lock); lock = 1 ; не является атомарным. Допустим, что поток P0 протестировал значение переменной lock и принял решение двигаться дальше. В этот момент, еще до присваивания переменной lock значения 1, планировщик передал управление потоку P1. Он тоже изучает содержимое переменной lock и тоже принимает решение войти в критический участок. Мы получаем два процесса, одновременно выполняющих свои критические секции.

Попробуем решить задачу сначала для двух процессов. Очередной подход будет также использовать общую для них обоих переменную с начальным значением 0. Только теперь она будет играть не роль замка для критического участка, а явно указывать, кто может следующим войти в него. Для i-го процесса это выглядит так:

shared int turn = 0;while (some condition) { while(turn != i); critical section turn = 1-i; remainder section }

Легко видеть, что взаимоисключение гарантируется, процессы входят в критическую секцию строго по очереди: P0, P1, P0, P1, P0, ... Но наш алгоритм не удовлетворяет условию прогресса. Например, если значение turn равно 1 и процесс P0 готов войти в критический участок, он не может сделать этого, даже если процесс P1 находится в remainder section.

Недостаток предыдущего алгоритма заключается в том, что процессы ничего не знают о состоянии друг друга в текущий момент времени. Давайте попробуем исправить эту ситуацию. Пусть два процесса имеют разделяемый массив флагов готовности входа процессов в критический участок

shared int ready[2] = {0, 0};

Когда i-й процесс готов войти в критическую секцию, он присваивает элементу массива ready[i] значение, равное 1. После выхода из критической секции он, естественно, сбрасывает это значение в 0. Процесс не входит в критическую секцию, если другой процесс уже готов к входу в критическую секцию или находится в ней.

shared int turn = 0;while (some condition) { ready[i] = 1; while(ready[1-i]); critical section ready[i] = 0; remainder section }

Полученный алгоритм обеспечивает взаимоисключение, позволяет процессу, готовому к входу в критический участок, войти в него сразу после завершения эпилога в другом процессе, но все равно нарушает условие прогресса. Пусть процессы практически одновременно подошли к выполнению пролога. После выполнения присваивания ready[0] = 1 планировщик передал процессор от процесса 0 процессу 1, который также выполнил присваивание ready[1] = 1. После этого оба процесса бесконечно долго ждут друг друга на входе в критическую секцию. Возникает ситуация, которую принято называть тупиковой (deadlock).

Первое решение проблемы, удовлетворяющее всем требованиям и использующее идеи ранее рассмотренных алгоритмов, было предложено датским математиком Деккером (Dekker). В 1981 году Петерсон (Peterson) предложил более изящное решение. Пусть оба процесса имеют доступ к массиву флагов готовности и к переменной очередности.

shared int ready[2] = {0, 0};shared int turn;while (some condition) { ready[i] = 1; turn =1- i; while(ready[1-i] && turn == 1-i); critical section ready[i] = 0; remainder section }

При исполнении пролога критической секции процесс Pi заявляет о своей готовности выполнить критический участок и одновременно предлагает другому процессу приступить к его выполнению. Если оба процесса подошли к прологу практически одновременно, то они оба объявят о своей готовности и предложат выполняться друг другу. При этом одно из предложений всегда последует после другого. Тем самым работу в критическом участке продолжит процесс, которому было сделано последнее предложение.

Наличие аппаратной поддержки взаимоисключений позволяет упростить алгоритмы и повысить их эффективность точно так же, как это происходит и в других областях программирования. Мы уже обращались к аппаратным средствам для решения задачи реализации взаимоисключений, когда говорили об использовании механизма запрета-разрешения прерываний.

Многие вычислительные системы помимо этого имеют специальные команды процессора, которые позволяют проверить и изменить значение машинного слова или поменять местами значения двух машинных слов в памяти, выполняя эти действия как атомарные операции. Рассмотрим, как концепции таких команд могут быть использованы для реализации взаимоисключений.

О выполнении команды Test-and-Set, осуществляющей проверку значения логической переменной с одновременной установкой ее значения в 1, можно думать как о выполнении функции

int Test_and_Set (int *target) { int tmp = *target; *target = 1; return tmp; }

С использованием этой атомарной команды мы можем модифицировать алгоритм для переменной-замка так, чтобы он обеспечивал взаимоисключения

shared int lock = 0;while (some condition) { while(Test_and_Set(&lock)); critical section lock = 0; remainder section }

К сожалению, даже в таком виде полученный алгоритм не удовлетворяет условию ограниченного ожидания для алгоритмов. Недостатком рассмотренного способа взаимоисключения является необходимость постоянного опроса другими потоками, требующими тот же ресурс, блокирующей переменой, когда один из потоков находится в критической секции. На это будет бесполезно тратиться процессорное время. Для устранения этого недостатка во многих ОС предусматриваются системные вызовы для работы с критическими секциями.

Большинство алгоритмов, рассмотренных выше, хотя и являются корректными, но достаточно громоздки и не обладают элегантностью. Более того, процедура ожидания входа в критический участок включает в себя достаточно длительное вращение процесса в пустом цикле, с потреблением вхолостую драгоценного времени процессора. Существуют и другие серьезные недостатки у алгоритмов, построенных средствами обычных языков программирования.

Семафоры и мониторы

Одним из первых механизмов, предложенных для синхронизации поведения процессов, стали семафоры, концепцию которых описал Дейкстра (Dijkstra) в 1965 году. Семафор представляет собой целую переменную, принимающую неотрицательные значения, доступ любого процесса к которой, за исключением момента ее инициализации, может осуществляться только через две атомарные операции: P (от датского слова proberen – проверять) и V (от verhogen – увеличивать). Классическое определение этих операций выглядит следующим образом:

P(S): пока S == 0 процесс блокируется;S = S - 1;V(S): S = S + 1;

Эта запись означает следующее: при выполнении операции P над семафором S сначала проверяется его значение. Если оно больше 0, то из S вычитается 1. Если оно меньше или равно 0, то процесс блокируется до тех пор, пока S не станет больше 0, после чего из S вычитается 1. При выполнении операции V над семафором S к его значению просто прибавляется 1.

Подобные переменные-семафоры могут с успехом использоваться для решения различных задач организации взаимодействия процессов. В ряде языков программирования они были непосредственно введены в синтаксис языка (например, в ALGOL-68), в других случаях применяются через использование системных вызовов. Соответствующая целая переменная располагается внутри адресного пространства ядра операционной системы. Операционная система обеспечивает атомарность операций P иV, используя, например, метод запрета прерываний на время выполнения соответствующих системных вызовов. Если при выполнении операции P заблокированными оказались несколько процессов, то порядок их разблокирования может быть произвольным, например, FIFO.

Одной из типовых задач, требующих организации взаимодействия процессов, является задача producer-consumer (производитель-потребитель). Пусть два процесса обмениваются информацией через буфер ограниченного размера. Производитель закладывает информацию в буфер, а потребитель извлекает ее оттуда. Грубо говоря, на этом уровне деятельность потребителя и производителя можно описать следующим образом:

Producer: while(1) { produce_item; put_item; } Consumer: while(1) { get_item; consume_item; }

Если буфер забит, то производитель должен ждать, пока в нем появится место, чтобы положить туда новую порцию информации. Если буфер пуст, то потребитель должен дожидаться нового сообщения. Как можно реализовать эти условия с помощью семафоров? Возьмем три семафора empty, full и mutex. Семафор fullбудем использовать для гарантии того, что потребитель будет ждать, пока в буфере появится информация.

Семафор empty будем использовать для организации ожидания производителя при заполненном буфере, а семафор mutex – для организации взаимоисключения на критических участках, которыми являются действия put_item и get_item (операции "положить информацию" и "взять информацию" не могут пересекаться, поскольку возникнет опасность искажения информации). Тогда решение задачи выглядит так:

Semaphore mutex = 1;Semaphore empty = N, где N – емкость буфера;Semaphore full = 0;Producer: while(1) { produce_item; P(empty); P(mutex); put_item; V(mutex); V(full); } Consumer: while(1) { P(full); P(mutex); put_item; V(mutex); V(empty); consume_item; }

Легко убедиться, что это действительно корректное решение поставленной задачи. Попутно заметим, что семафоры использовались здесь для достижения двух целей: организации взаимоисключения на критическом участке и синхронизации скорости работы процессов.

Хотя решение задачи producer-consumer с помощью семафоров выглядит достаточно элегантно, программирование с их использованием требует повышенной осторожности и внимания, чем, отчасти, напоминает программирование на языке ассемблера. Допустим, что в рассмотренном примере мы случайно поменяли местами операции P, сначала выполняя ее для семафора mutex, а уже затем для семафоров full и empty. Допустим теперь, что потребитель, войдя в свой критический участок ( mutex сброшен), обнаруживает, что буфер пуст. Он блокируется и начинает ждать появления сообщений. Но производитель не может войти в критический участок для передачи информации, так как тот заблокирован потребителем. Получаем тупиковую ситуацию.

В сложных программах произвести анализ правильности использования семафоров с карандашом в руках становится очень непростым занятием. В то же время обычные способы отладки программ зачастую не дают результата, поскольку возникновение ошибок зависит от interleaving'а атомарных операций, и ошибки могут быть трудно воспроизводимы. Для того чтобы облегчить труд программистов, в 1974 году Хоаром (Hoare) был предложен механизм еще более высокого уровня, чем семафоры, получивший название мониторов. Рассмотрим конструкцию, несколько отличающуюся от оригинальной.

Мониторы представляют собой тип данных, который может быть с успехом внедрен в объектно-ориентированные языки программирования. Монитор обладает своими собственными переменными, определяющими его состояние. Значения этих переменных извне монитора могут быть изменены только с помощью вызова функций-методов, принадлежащих монитору. В свою очередь, эти функции-методы могут использовать в своей работе только данные, находящиеся внутри монитора, и свои параметры. На абстрактном уровне можно описать структуру монитора следующим образом:

monitor monitor_name { описание переменных ; void m1(...){... } void m2(...) { ... } ... void mn(...) { ... } { блок инициализации внутренних переменных ; }

Здесь функции m1,..., mn представляют собой функции-методы монитора, а блок инициализации внутренних переменных содержит операции, которые выполняются только один раз: при создании монитора или при самом первом вызове какой-либо функции-метода до ее исполнения.

Важной особенностью мониторов является то, что в любой момент времени только один процесс может быть активен, т. е. находиться в состоянии "готовность" или "исполнение", внутри данного монитора. Поскольку мониторы представляют собой особые конструкции языка программирования, компилятор может отличить вызов функции, принадлежащей монитору, от вызовов других функций и обработать его специальным образом, добавив к нему пролог и эпилог, реализующий взаимоисключение. Так как обязанность конструирования механизма взаимоисключений возложена на компилятор, а не на программиста, работа программиста при использовании мониторов существенно упрощается, а вероятность появления ошибок становится меньше.

Однако одних только взаимоисключений недостаточно для того, чтобы в полном объеме реализовать решение задач, возникающих при взаимодействии процессов. Нам нужны еще и средства организации очередности процессов, подобно семафорам full и empty в предыдущем примере. Для этого в мониторах было введено понятие условных переменных (condition variables), над которыми можно совершать две операции – wait и signal, до некоторой степени похожие на операции P и Vнад семафорами.

Если функция монитора не может выполняться дальше, пока не наступит некоторое событие, она выполняет операцию wait над какой-либо условной переменной. При этом процесс, выполнивший операцию wait, блокируется, становится неактивным, и другой процесс получает возможность войти в монитор.

Когда ожидаемое событие происходит, другой процесс внутри функции-метода совершает операцию signal над той же самой условной переменной. Это приводит к пробуждению ранее заблокированного процесса, и он становится активным. Если несколько процессов дожидались операции signal для этой переменной, то активным становится только один из них. Что нужно предпринять для того, чтобы не оказалось двух процессов, разбудившего и пробужденного, одновременно активных внутри монитора? Хор предложил, чтобы пробужденный процесс подавлял исполнение разбудившего процесса, пока он сам не покинет монитор. Несколько позже Хансен (Hansen) предложил другой механизм: разбудивший процесс покидает монитор немедленно после исполнения операции signal. Рассмотрим подход Хансена. Применим концепцию мониторов к решению задачи "производитель-потребитель".

monitor ProducerConsumer { condition full, empty; int count; void put() { if(count == N) full.wait; put_item; count += 1; if(count == 1) empty.signal; } void get() { if (count == 0) empty.wait; get_item(); count -= 1; if(count == N-1) full.signal; } { count = 0; } } Producer: while(1) { produce_item;ProducerConsumer.put(); } Consumer: while(1) { ProducerConsumer.get(); consume_item;}

Легко убедиться, что приведенный пример действительно решает поставленную задачу.

Взаимоблокировки (тупики)

Коффман и другие исследователи доказали, что для возникновения тупиковой ситуации должны выполняться четыре условия [37].

  1. Условие взаимного исключения. Каждый ресурс в данный момент или отдан ровно одному процессу, или доступен.
  2. Условие удерживания и ожидания. Процессы, в данный момент удерживающие полученные ранее ресурсы, могут запрашивать новые ресурсы.
  3. Условие отсутствия принудительной выгрузки ресурсов. У процесса нельзя забрать принудительно ранее полученные ресурсы. Процесс, владеющий ими, должен сам освободить ресурсы.
  4. Условие циклического ожидания. Должна существовать круговая последовательность из двух и более процессов, каждый из которых ждет доступа к ресурсу, удерживаемому следующим членом последовательности.

Для того чтобы произошла взаимоблокировка, должны выполняться все эти четыре условия. Если хотя бы одно отсутствует, тупиковая ситуация невозможна.

При столкновении с взаимоблокировками используются четыре стратегии.

  • Пренебрежение проблемой в целом.
  • Обнаружение и восстановление. Позволить взаимоблокировке произойти, обнаружить ее и предпринять какие-либо действия.
  • Избегать тупиковых ситуаций с помощью аккуратного распределения ресурсов.
  • Предотвращать с помощью структурного опровержения одного из четырех условий, необходимых для взаимоблокировки.

Если взаимоблокировки случаются в среднем раз в пять лет, а сбои ОС, компиляторов и неисправности аппаратуры происходят в среднем один раз в неделю, то подходит первая стратегия. К этому надо добавить, что большинство операционных систем потенциально страдают от взаимоблокировок, которые не обнаруживаются, не говоря уже об автоматическом выходе из тупика.

Вторая техника представляет собой обнаружение и восстановление. При использовании этого метода система не пытается предотвратить попадания в тупиковые ситуации. Вместо этого она позволяет произойти взаимоблокировке, старается определить, когда это случилось, и затем совершает некоторые действия по возврату системы к состоянию, имевшему место до того, как система попала в тупик.

Рассмотрим методы обнаружения взаимоблокировок.

Обнаружение взаимоблокировки при наличии одного ресурса каждого типа достаточно просто. Для такой системы можно построить граф ресурсов и процессов, о котором уже говорилось, и если в графе нет циклов, система в тупик не попала.

Например, пусть система из семи процессов (A, B, C, D, E, F, G) и шести ресурсов (R, S, T, V,W, U) в некоторый момент соответствует следующему списку [17].

1. Процесс A занимает ресурс R и хочет получить ресурс S.

Вопрос: заблокирована ли эта система, и если да, то какие процессы в этом участвуют?

Чтобы ответить на этот вопрос, нужно составить граф ресурсов и процессов (рис. 5.14).


Рис. 5.14. Граф ресурсов и процессов

Этот граф содержит цикл, указывающий, что процессы D, E, G заблокированы (зрительно легко видно). Однако в этом случае в операционной системе необходима реализация формального алгоритма, выявляющего тупики.

Рассмотрим возможность обнаружения взаимоблокировок при наличии нескольких ресурсов каждого типа. Пусть имеется множество процессов P={P1, P2,... Pn}, всего n процессов, и множество ресурсов E={E1, E2,... Em}, где m – число классов ресурсов. В любой момент времени некоторые из ресурсов могут быть заняты и, соответственно, недоступны. Пусть А – вектор доступных ресурсов A={A1, A2,... Am}. Очевидно, что Aj<= Ej, j = 1, 2, …, m.

Введем в рассмотрение две матрицы:

C={ci,j| i = 1, 2,…, n; j = 1, 2, …, m} – матрица текущего распределения ресурсов, где ci,j – количество ресурсов j-ого класса, которые занимает процессPi ;

R={ri,j| i = 1, 2,…, n; j = 1,2, …, m} – матрица требуемых (запра

Последнее изменение этой страницы: 2016-06-10

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...