Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Проверка гипотезы о законе распределения

Одна из важнейших задач анализа вариационных рядов заключается в выявлении закономерности распределения и определении ее характера. Основной путь в выявлении закономерности распределения — построение вариационных рядов для достаточно больших совокупностей. Важное значение для выявления закономерности распределения имеет правильное построение самого вариационного ряда: выбор числа групп и размера интервала варьирующего признака.

Когда мы говорим о характере, типе закономерности распределения, имеем в виду отражение в нем общих условий вариации. При этом речь всегда идет о распределениях качественно однородных явлений. Общие условия, определяющие тип закономерности распределения, познаются анализом сущности явления, тех его свойств, которые определяют вариацию изучаемого признака. Следовательно, должна быть выдвинута какая-то научная гипотеза, обосновывающая тип теоретической кривой распределения.

Под теоретической кривой распределения понимается графическое изображение ряда в виде непрерывной линии изменения частот в вариационном ряду, функционально связанного с изменением вариантов (значений признака). Теоретическое распределение может быть выражено аналитически — формулой, которая связывает частоты вариационного ряда и соответствующие значения признака. Такие алгебраические формулы носят название законов распределения.

Большое познавательное значение имеет сопоставление фактических кривых распределения с теоретическими.

Как уже отмечалось, часто пользуются типом распределения которое называется нормальным. Формула функции плотности нормального распределения такова:

Следовательно, кривая нормального распределения может быть построена по двум параметрам — средней арифметической \х и среднему квадратическому отклонению а.

Гипотезы о распределениях заключаются в предположении о том, что распределение в генеральной совокупности подчиняется какому-то определенному закону. Проверка гипотезы состоит в том, чтобы на основе сравнения фактических (эмпирических) частот с предполагаемыми (теоретическими) частотами сделать вывод о соответствии фактического распределения гипотетическому распределению. Может проводиться и сравнение частостей.

Под гипотетическим распределением необязательно понимается нормальное распределение. Может быть выдвинута гипотеза о биномиальном распределении, распределении Пуассона и т.д. Причина частого обращения к нормальному распределению в том, что в этом типе распределения выражается закономерность, возникающая при взаимодействии множества случайных причин, когда ни одна из них не имеет преобладающего влияния. Закон нормального распределения лежит в основе многих теорем математической статистики, применяемых для оценки репрезентативности выборок, при измерении связей и т.д. В социально-экономической статистике нормальное распределение встречается редко, но сравнение с ним важно для выяснения степени и характера отклонения от него фактического распределения.

В гл. 5 отмечалось, что близость средней арифметической величины, медианы и моды указывает на вероятное соответствие изучаемого распределения нормальному закону. Но более полная и точная проверка соответствия распределения гипотезе о нормальном законе проводится с использованием

 

279

Тот же результат мы получим по таблице значений функции Пуассона (табл. П.8 приложения).

 

Критерий Колмогорова—Смирнова

Проверку гипотезы о законе распределения можно проводить с помощью критерия Колмогорова—Смирнова. Это альтернатива критерию хи-квадрат. Применение этого критерия не требует расчета ожидаемых частот и может использоваться для малых выборок. Данные должны представлять случайную выборку, переменные должны быть измерены по крайней мере на порядковой шкале; должна быть сформулирована гипотеза о распределении генеральной совокупности. Нулевая гипотеза состоит в том, что выборка взята из специфицированной генеральной совокупности. Альтернативная гипотеза заключается в утверждении обратного.

 

 

Можно считать, что выборка работников проведена из нормально распределенной совокупности со средней величиной среднедневного заработка 200 руб./день и стандартным отклонением 50 руб./день.

Выбор закона распределения проводится на основе теоретического анализа. Кроме того, целесообразно руководствоваться следующей рекомендацией: выражение, определяющее функцию плотности распределения, должно зависеть от возможно меньшего числа параметров. Например, экспоненциальное распределение зависит от одного параметра — средней величины; нормальное и логнормальное распределение — от двух параметров.

Последнее изменение этой страницы: 2016-07-28

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...