Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Проверка гипотезы о связи на основе критерия X2 (хи-квадрат)

Расчет теоретически ожидаемых частот в ячейках таблицы сопряженности должен проводиться, как мы уже указывали

Таблица 8.7 Исходные данные: таблица сопряженности

 

291

 

Итак, мы рассмотрели один из возможных способов ответа на вопрос: существует ли связь между двумя переменными? Для этого нам понадобилось выдвинуть нулевую гипотезу, что такой связи нет, а затем рассмотреть способ статистического испытания этой гипотезы. Можно оценить величину риска в принятии предположения о существовании связи. Но означает ли это, что данная связь существенна с точки зрения ее силы? Вовсе не обязательно. Вопрос о силе или степени, тесноте зависимости — это иной вопрос, отличный от вопроса о существовании взаимосвязи.

В социально-экономических исследованиях, как правило, установление факта наличия связи между переменными не самоцель. Установив наличие связи, исследователь должен измерить ее силу (тесноту) с тем, чтобы иметь возможность сравнивать взаимосвязи между различными характеристиками, выделять наиболее сильные из них (гл. 9, 11).

Проверка гипотезы о средних величинах

Основные гипотезы о средних величинах следующие: гипотезы о значении генеральной средней (при известной генеральной дисперсии или при неизвестной генеральной дисперсии); гипотезы о равенстве генеральных средних нормально распределенных совокупностей (при известных генеральных диспер-

 

Основы дисперсионного анализа

 

Таблица 8.14 Пример двухфакторного дисперсионного анализа

Рассмотренные направления проверки статистических гипотез охватывают лишь важнейшие из них. Процедура испытания статистических гипотез применяется для определения того, случайно или нет полученное значение коэффициента корреляции, коэффициента вариации и т.д., случайны или нет различия в значениях показателей (медиан, коэффициентов корреляции, регрессии и т.д.) в разных совокупностях. Во всех случаях результатом является вероятностное суждение, которое составляет сущность анализа данных в разнообразных сферах: в медицине, биологии, технике, политике, спорте, экономике, психологии и социологии.

Некоторые непараметрические критерии

В предыдущих подразделах рассмотрено применение основных статистико-математических критериев: хи-квадрата (непараметрический критерий) и f-критерия (параметрический критерий). В этом подразделе рассмотрим дополнительно ряд непараметрических критериев, актуальность использования которых непрерывно возрастает.

 

 

Непараметрическое тестирование не нуждается в каких-либо предположениях относительно характера распределения генеральной совокупности, из которой взята изучаемая выборка. Это наиболее неприятный момент для параметрических тестов, которые выведены в предположении о нормальности генеральной совокупности. При сравнении двух и более генеральных совокупностей предполагается, что генеральные дисперсии равны. Большинство параметрических тестов требуют, чтобы данные были представлены в интервальной шкале или шкале отношений, в то время как многие непараметрические тесты не включают таких требований к данным.

 

Непараметрические тесты используются вместо параметрических, когда данные измерены на номинальной или порядковой шкале; когда данные измерены на интервальной или порядковой шкале, но предположение о нормальности не может быть сделано.

По сравнению с параметрическими тестами непараметрическое тестирование имеет следующие преимущества и недостатки.

 

Преимущества

1. Меньше предположений о генеральной совокупности. Наиболее важное из них то, что совокупность не должна быть нормально распределенной или приблизительно нормальной. Непараметрические тесты не включают никаких предположений о каком-либо типе распределения.

2. Методы непараметрического тестирования могут быть применены даже тогда, когда выборка очень мала.

3. Могут использоваться данные, представленные в любых шкалах измерения (номинальные, порядковые).

4. Простота вычислений, которые могут проводиться на микрокалькуляторе. Это прежде всего связано с малым числом наблюдений, к которым применяются непараметрические тесты.

 

Недостатки

1. По сравнению с параметрическими тестами информация, имеющаяся в данных, используется менее эффективно, и мощность тестов ниже, чем параметрических. По этой причине параметрические тесты предпочтительнее, когда требуемые предположения относительно генеральной совокупности могут быть сделаны.

 

Основным непараметрическим критерием является критерий хи-квадрат. Важное значение имеет и непараметрический критерий Колмогорова—Смирнова. Непараметрические критерии занимают все более важное место в решениях задач статистического вывода, прежде всего с расширением анализа нечисловых данных (гл. 11).

РЕЗЮМЕ

Можно сделать статистический вывод — оценить свойства генеральной совокупности — с помощью испытания гипотез.

Процедура испытания всех гипотез одна и та же: ® определяем, что мы хотим узнать;

• формируем нулевую и альтернативную гипотезы;

• выбираем тестовую статистику (критерий); ® устанавливаем уровень значимости;

® вычисляем тестовую статистику (критерий) по данным

выборки; © находим критическое (табличное) значение критерия; ® сравниваем фактическое и критическое значения критерия и делаем вывод относительно нулевой гипотезы. При испытании гипотезы о законе распределения используется непараметрический критерий: либо хи-квадрат Пирсона, либо критерий Колмогорова—Смирнова.

Непараметрические критерии предпочтительны, поскольку не требуют предположений о характере распределения генеральной совокупности. Все чаще используется критерий знаков Вилкоксона, который применяется как к данным одной выборки, так и к данным двух сравнимых выборок. Для сравнения двух неравных выборок в случае порядковых данных может использоваться критерий суммы рангов Вилкоксона; для сравнения более двух выборок используется непараметрический критерий Краскала—Уоллиса.

 

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1. Айвазян С. А., Мхитарян В. С. Теория вероятностей и прикладная статистика. Т. 1: Учебник для вузов. — М.: ЮНИТИ, 2001.

2. Закс Л. Статистическое оценивание: Пер. с нем. / Под ред. и с предисл. Ю. П. Адлера и В. Г. Горского. — М.: Статистика, 1976.

3. Козлов А. Ю., Шишлов В. Ф, Пакет анализа MS Excel в экономико-статистических расчетах / Под ред. В. С. Мхитаряна. — М.: ЮНИТИ - ДАНА, 2003.

4. Ниворожкина Л. И., Морозова 3. А. Сборник задач по математической статистике с элементами теории вероятностей РИНХ. - Ростов-на-Дону, 2002.

5. Эддоус М., Стэнсфшд Р. Методы принятия решений: Пер. с англ. / Под ред. И. И. Елисеевой. - М.: ЮНИТИ, 1997.

 

Последнее изменение этой страницы: 2016-07-28

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...