Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Окрестностное определение по Коши

Предел функции по Гейне

Значение называется пределом (предельным значением) функции в точке , если для любой последовательности точек , сходящейся к , но не содержащей в качестве одного из своих элементов (то есть в проколотой окрестности ), последовательность значений функции сходится к .[1]

Предел функции по Коши

Значение называется пределом (предельным значением) функции в точке , если для любого наперёд взятого положительного числа найдётся отвечающее ему положительное число такое, что для всех аргументов , удовлетворяющих условию , выполняется неравенство .[1]

Окрестностное определение по Коши

Значение называется пределом (предельным значением) функции в точке , если для любой окрестности точки существует выколотая окрестность точки такая, что образ этой окрестности лежит в . Фундаментальное обоснование данного определения предела можно найти в статье Предел вдоль фильтра.

5)

Предел суммы

Предел суммы двух функций равен сумме пределов этих функций:

Расширенное правило суммы

Предел постоянной величины

Предел постоянной величины равен самой постоянной величине:

Предел произведения функции на постоянную величину

Постоянный коэффициент можно выносить за знак предела:

Предел произведения

Предел произведения двух функций равен произведению пределов этих функций (при условии, что последние существуют):

Расширенное правило произведения

Предел частного

Предел частного двух функций равен отношению пределов этих функций при условии, что предел знаменателя не равен нулю:

Предел степенной функции

где степень p - действительное число. В частности,

Если f ( x ) = x, то

Предел показательной функции

где основание a > 0.

Предел логарифмической функции

где основание a > 0.

Теорема "о двух милиционерах"

Предположим, что для всех x близких к a, за исключением, быть может, самой точки x = a. Тогда, если

то

То есть функция f (x) остается "зажатой" между двумя другими функциями, стремящимися к одному и тому же пределу L.

6)

Пусть на некотором числовом множестве задана числовая функция и число — предельная точка области определения . Существуют различные определения для односторонних пределов функции в точке , но все они эквивалентны.

Односторонний предел по Гейне

  • Число называется правосторонним пределом (правым пределом, пределом справа) функции в точке , если для всякой последовательности , состоящей из точек, больших числа , которая сама сходится к числу , соответствующая последовательность значений функции сходится к числу .

  • Число называется левосторонним пределом (левым пределом, пределом слева) функции в точке , если для всякой последовательности , состоящей из точек, меньших числа , которая сама сходится к числу , соответствующая последовательность значений функции сходится к числу .[1]

Односторонний предел по Коши

  • Число называется правосторонним пределом (правым пределом, пределом справа) функции в точке , если для всякого положительного числа отыщется отвечающее ему положительное число такое, что для всех точек из интервала справедливо неравенство .

  • Число называется левосторонним пределом (левым пределом, пределом слева) функции в точке , если для всякого положительного числа отыщется отвечающее ему положительное число , такое, что для всех точек из интервала справедливо неравенство .[1]

ε-δ определение непрерывности в точки

Пусть и .

Функция непрерывна в точке , если для любого существует такое, что для любого

Функция непрерывна на множестве , если она непрерывна в каждой точке данного множества.

В этом случае говорят, что функция класса и пишут: или, подробнее,

Точки разрыва

Если условие, входящее в определение непрерывности функции в некоторой точке, нарушается, то говорят, что рассматриваемая функция терпит в данной точке разрыв. Другими словами, если — значение функции в точке , то предел такой функции (если он существует) не совпадает с . На языке окрестностей условие разрывности функции в точке получается отрицанием условия непрерывности рассматриваемой функции в данной точке, а именно: существует такая окрестность точки области значений функции , что как бы мы близко не подходили к точке области определения функции , всегда найдутся такие точки, чьи образы будут за пределами окрестности точки .

Устранимые точки разрыва

Если предел функции существует, но он не совпадает со значением функции в данной точке:

тогда точка называется точкой устранимого разрыва функции (в комплексном анализе — устранимая особая точка).

Если «поправить» функцию в точке устранимого разрыва и положить , то получится функция, непрерывная в данной точке. Такая операция над функцией называется доопределением фукции до непрерывной или доопределением фукции по непрерывности, что и обосновывает название точки, как точки устранимого разрыва.

7)

Свойства

Локальные

  • Функция, непрерывная в точке , является ограниченной в некоторой окрестности этой точки.
  • Если функция непрерывна в точке и (или ), то (или ) для всех , достаточно близких к .
  • Если функции и непрерывны в точке , то функции и тоже непрерывны в точке .
  • Если функции и непрерывны в точке и при этом , то функция тоже непрерывна в точке .
  • Если функция непрерывна в точке и функция непрерывна в точке , то их композиция непрерывна в точке .

Глобальные

  • Функция, непрерывная на отрезке (или любом другом компактном множестве), равномерно непрерывна на нём.
  • Функция, непрерывная на отрезке (или любом другом компактном множестве), ограничена и достигает на нём свои максимальное и минимальное значения.
  • Областью значений функции , непрерывной на отрезке , является отрезок где минимум и максимум берутся по отрезку .
  • Если функция непрерывна на отрезке и то существует точка в которой .
  • Если функция непрерывна на отрезке и число удовлетворяет неравенству или неравенству то существует точка в которой .
  • Непрерывное отображение отрезка в вещественную прямую инъективно в том и только в том случае, когда данная функция на отрезке строго монотонна.
  • Монотонная функция на отрезке непрерывна в том и только в том случае, когда область ее значений является отрезком с концами и .
  • Если функции и непрерывны на отрезке , причем и то существует точка в которой Отсюда, в частности, следует, что любое непрерывное отображение отрезка в себя имеет хотя бы одну неподвижную точку.

9)

Геометрический смысл производной. Производная в точке x 0 равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке.

Рассмотрим график функции y = f ( x ):

Из рис.1 видно, что для любых двух точек A и B графика функции: xf(x0+ x)−f(x0)=tg , где - угол наклона секущей AB.
Таким образом, разностное отношение равно угловому коэффициенту секущей.
Если зафиксировать точку A и двигать по направлению к ней точку B, то x неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС.
Следовательно, предел разностного отношения равен угловому коэффициенту касательной в точке A.

10)

Рассмотрим функцию y = f(x), дифференцируемую в данной точке x. Приращение D y ее представимо в виде

D y = f'(x)D x +a (D x) D x,

где первое слагаемое линейно относительно D x, а второе является в точке D x = 0 бесконечно малой функцией более высокого порядка, чем D x. Если f'(x)¹ 0, то первое слагаемое представляет собой главную часть приращения D y. Эта главная часть приращения является линейной функцией аргумента D x и называется дифференциалом функции y = f(x). Если f'(x) = 0, то дифференциал функции по определению считается равным нулю.

Определение 5 (дифференциал).Дифференциалом функции y = f(x) называется главная линейная относительно D x часть приращения D y, равная произведению производной на приращение независимой переменной

dy = f'(x)D x.

Заметим, что дифференциал независимой переменной равен приращению этой переменной dx = D x. Поэтому формулу для дифференциала принято записывать в следующем виде:

dy = f'(x)dx. (4)

Выясним каков геометрический смысл дифференциала. Возьмем на графике функции y = f(x) произвольную точку M(x,y) (рис21.). Проведем касательную к кривой y = f(x) в точке M, которая образует угол f с положительным направлением оси OX, то есть f'(x) = tg f. Из прямоугольного треугольника MKN

KN = MNtgf = D xtg f = f'(x)D x,

то есть dy = KN.

Таким образом, дифференциал функции есть приращение ординаты касательной, проведенной к графику функции y = f(x) в данной точке, когда x получает приращение D x.

Отметим основные свойства дифференциала, которые аналогичны свойствам производной.

  1. d c = 0;
  2. d(c u(x)) = c d u(x);
  3. d(u(x) ± v(x)) = d u(x) ± d v(x);
  4. d(u(x) v(x)) = v(x) d u(x) + u(x)d v(x);
  5. d(u(x) / v(x)) = (v(x) d u(x) - u(x) d v(x)) / v2(x).

Укажем еще на одно свойство, которым обладает дифференциал, но не обладает производная. Рассмотрим функцию y = f(u), где u = f (x), то есть рассмотрим сложную функцию y = f(f(x)). Если каждая из функций f и f являются дифференцируемыми, то производная сложной функции согласно теореме (3) равна y' = f'(u)· u'. Тогда дифференциал функции

dy = f'(x)dx = f'(u)u'dx = f'(u)du,

так как u'dx = du. То есть

dy = f'(u)du. (5)

Последнее равенство означает, что формула дифференциала не изменяется, если вместо функции от x рассматривать функцию от переменной u. Это свойство дифференциала получило название инвариантности формы первого дифференциала.

Замечание. Отметим, что в формуле (4) dx = D x, а в формуле (5) du яляется лишь линейной частью приращения функции u.

11)

Теорема Роля (Ролля).

Если функция является непрерывной на отрезке [a, b] и дифференцируемой на интервале (a, b), принимает на концах этого интервала одинаковые значения (т.е. ), то на этом интервале найдётся хотя бы одна точка x=c, в которой производная функции f(x) равна нулю, т.е.

Теорема Ферма Пусть функция имеет на множестве точку экстремума , причём множество содержит некоторую -окрестность точки . Тогда либо имеет в точке производную, равную 0, то есть , либо производная в точке не существует.

 

Теорема Лагранжа Пусть функция дифференцируема на интервале и непрерывна в точках и . Тогда найдётся такая точка , что

 

Теорема Коши Пусть функции и дифференцируемы на интервале и непрерывны при и , причём при всех . Тогда в интервале найдётся такая точка , что

12)

лемма Ферма

Пусть функция имеет во внутренней точке области определения локальный экстремум. Пусть также существуют односторонние производные конечные или бесконечные. Тогда

  • если — точка локального максимума, то
  • если — точка локального минимума, то

В частности, если функция имеет в производную, то

 

Площадь треугольника

  1. , так как , то:
  2. — формула Герона
  3. — для прямоугольного треугольника
  4. — для равностороннего треугольника
  5. — если треугольник задан по стороне и двум прилежащим к ней углам
  6. — если треугольник задан по стороне и двум прилежащим к ней углам
  7. — ориентированная площадь треугольника на комплексной плоскости с вершинами в a, b, c.

Где:

  • — высота, проведённая на сторону ,
  • — полупериметр,
  • — радиус вписанной окружности,
  • — радиус вневписанной окружности, касающейся стороны ,
  • — радиус описанной окружности,
  • — координаты вершин треугольника.

Для площади справедливы неравенства:

  • , причём оба равенства достигаются.
  • , где равенство достигается для равнобедренного прямоугольного треугольника.

Площадь параллелограмма

, где a — сторона, h — высота проведенная к этой стороне.

, где a и b — стороны, а — угол между сторонами a и b.

.

, где p — полупериметр, r — радиус вписанной окружности

20)

  • Объём пирамиды может быть вычислен по формуле:

где — площадь основания и — высота;

Прямой параллелепипед

Объём V=Sо*h

Прямоугольный параллелепипед

Объём V=abc, где a, b, c — измерения прямоугольного параллелепипеда.

Куб

Объём V=a³

21)

Уравнения плоскости

Плоскость — алгебраическая поверхность первого порядка: в декартовой системе координат плоскость может быть задана уравнением первой степени.

  • Общее уравнение (полное) плоскости

где и — постоянные, причём и одновременно не равны нулю; в векторной форме:

где — радиус-вектор точки , вектор перпендикулярен к плоскости (нормальный вектор). Направляющие косинусы вектора :

Если один из коэффициентов в уравнении плоскости равен нулю, уравнение называется неполным. При плоскость проходит через начало координат, при (или , ) П. параллельна оси (соответственно или ). При ( , или ) плоскость параллельна плоскости (соответственно или ).

  • Уравнение плоскости в отрезках:

где , , — отрезки, отсекаемые плоскостью на осях и .

  • Уравнение плоскости, проходящей через точку перпендикулярно вектору нормали :

в векторной форме:

  • Уравнение плоскости, проходящей через три заданные точки , не лежащие на одной прямой:

(смешанное произведение векторов), иначе

  • Нормальное (нормированное) уравнение плоскости

в векторной форме:

где - единичный вектор, — расстояние П. от начала координат. Уравнение (2) может быть получено из уравнения (1) умножением на нормирующий множитель

(знаки и противоположны).

22)

Векторное параметрическое уравнение прямой в пространстве:

где — радиус-вектор некоторой фиксированной точки лежащей на прямой, — ненулевой вектор, коллинеарный этой прямой (называемый её направляющим вектором), — радиус-вектор произвольной точки прямой.

Параметрическое уравнение прямой в пространстве:

где — координаты некоторой фиксированной точки лежащей на прямой; — координаты вектора, коллинеарного этой прямой.

Каноническое уравнение прямой в пространстве:

где — координаты некоторой фиксированной точки лежащей на прямой; — координаты вектора, коллинеарного этой прямой.

Общее векторное уравнение прямой[уточнить] в пространстве:

Поскольку прямая является пересечением двух различных непараллельных плоскостей, заданных соответственно общими уравнениями:

А1х + В1у + С1 = 0,

А2х + В2у + С2 = 0,

 

то уравнение прямой можно задать системой этих уравнений:

Уравнение прямой в пространстве можно записать в виде векторного произведения радиуса-вектора произвольной точки этой прямой на фиксированный направляющий вектор прямой :

где фиксированный вектор , ортогональный вектору , можно найти, подставляя в это уравнение радиус-вектор какой-нибудь одной известной точки прямой.

23)

Определение.Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим уравнением прямой.В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

• C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат

• А = 0, В ≠0, С ≠0 { By + C = 0}- прямая параллельна оси Ох

• В = 0, А ≠0, С ≠ 0 { Ax + C = 0} – прямая параллельна оси Оу

• В = С = 0, А ≠0 – прямая совпадает с осью Оу

• А = С = 0, В ≠0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

24)

Пусть плоскость задана уравнением и дана точка . Тогда расстояние от точки до плоскости определяется по формуле

(11.7)


Доказательство. Расстояние от точки до плоскости -- это, по определению, длина перпендикуляра , опущенного из точки на плоскость (рис. 11.9).

 

Рис.11.9.Расстояние от точки до плоскости

 

Вектор и нормальный вектор n плоскости параллельны, то есть угол между ними равен 0 или , если вектор n имеет направление противоположное, указанному на рис. 11.9. Поэтому

Откуда

(11.8)


Координаты точки , которые нам неизвестны, обозначим . Тогда . Так как , то . Раскрыв скобки и перегруппировав слагаемые, получим

(11.9)


Точка лежит на плоскости , поэтому ее координаты удовлетворяют уравнению плоскости: . Отсюда находим, что . Подставив полученный результат в формулу (11.9), получим . Так как , то из формулы (11.8) следует формула (11.7).

Пусть плоскости и заданы соответственно уравнениями и . Требуется найти угол между этими плоскостями.

Плоскости, пересекаясь, образуют четыре двугранных угла (рис. 11.6): два тупых и два острых или четыре прямых, причем оба тупых угла равны между собой, и оба острых тоже равны между собой. Мы всегда будем искать острый угол. Для определения его величины возьмем точку на линии пересечения плоскостей и в этой точке в каждой из плоскостей проведем перпендикуляры и к линии пересечения. Нарисуем также нормальные векторы и плоскостей и с началами в точке (рис. 11.6).

 

Рис.11.6.Угол между плоскостями

 

Если через точку провести плоскость , перпендикулярную линии пересечения плоскостей и , то прямые и и изображения векторов и будут лежать в этой плоскости. Сделаем чертеж в плоскости (возможны два варианта: рис. 11.7 и 11.8).

 

Рис.11.7.Угол между нормальными векторами острый

Рис.11.8.Угол между нормальными векторами тупой

 

В одном варианте (рис. 11.7) и

Последнее изменение этой страницы: 2016-06-08

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...