Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Угол между прямыми. Угол между прямой и плоскостью.

Угол между прямыми в пространстве равен углу между их направляющими векторами. Поэтому, если две прямые заданы каноническими уравнениями вида

и косинус угла между ними можно найти по формуле:

. (8.14)

Условия параллельности и перпендикулярности прямых тоже сводятся к соответствующим условиям для их направляющих векторов:

- условие параллельности прямых, (8.15)

- условие перпендикулярности прямых. (8.16)

Угол φ между прямой, заданной каноническими уравнениями

и плоскостью, определяемой общим уравнением

Ax + By + Cz + D = 0, можно рассматривать как дополнительный к углу ψ между направляющим вектором прямой и нормалью к плоскости. Тогда

(8.17)

Условием параллельности прямой и плоскости является при этом условие перпендикулярности векторов n и а:

Al + Bm + Cn = 0, (8.18)

а условием перпендикулярности прямой и плоскости – условие параллельности этих векторов: A/l = B/m = C/n. (8.19)

25)

Линейное, или векторное пространство над полем — это непустое множество , на котором введены операции

  1. сложения, то есть каждой паре элементов множества ставится в соответствие элемент того же множества, обозначаемый и
  2. умножения на скаляр (то есть элемент поля ), то есть любому элементу и любому элементу ставится в соответствие единственный элемент из , обозначаемый .

При этом на операции накладываются следующие условия:

  1. , для любых (коммутативность сложения);
  2. , для любых (ассоциативность сложения);
  3. существует такой элемент , что для любого (существование нейтрального элемента относительно сложения), в частности не пусто;
  4. для любого существует такой элемент , что (существование противоположного элемента относительно сложения).
  5. (ассоциативность умножения на скаляр);
  6. (унитарность: умножение на нейтральный (по умножению) элемент поля P сохраняет вектор).
  7. (дистрибутивность умножения на вектор относительно сложения скаляров);
  8. (дистрибутивность умножения на скаляр относительно сложения векторов).

Элементы множества называют векторами, а элементы поля скалярами. Свойства 1-4 совпадают с аксиомами абелевой группы.

Простейшие свойства

  1. Векторное пространство является абелевой группой по сложению.
  2. Нейтральный элемент является единственным, что вытекает из групповых свойств.
  3. для любого .
  4. Для любого противоположный элемент является единственным, что вытекает из групповых свойств.
  5. для любого .
  6. для любых и .
  7. для любого .

Связанные определения и свойства

Подпространство

Алгебраическое определение: Линейное подпространство или векторное подпространство ― непустое подмножество линейного пространства такое, что само является линейным пространством по отношению к определенным в действиям сложения и умножения на скаляр. Множество всех подпространств обычно обозначают как . Чтобы подмножество было подпространством, необходимо и достаточно, чтобы

  1. ;
  2. для всякого вектора , вектор также принадлежал , при любом ;
  3. для всяких векторов , вектор также принадлежал .

Последние два утверждения эквивалентны следующему:

для всяких векторов , вектор также принадлежал для любых .

В частности, пространство, состоящее из одного элемента , является подпространством любого пространства; любое пространство является само себе подпространством. Подпространства, не совпадающие с этими двумя, называют собственными или нетривиальными.

Свойства подпространств

  • Пересечение любого семейства подпространств — снова подпространство;
  • Сумма конечного семейства подпространств — снова подпространство. Сумма подпространств определяется как множество, содержащее всевозможные суммы элементов :

.

В функциональном анализе в бесконечномерных пространствах особо выделяют замкнутые подпространства.

Базис. Размерность

  • Конечная сумма вида

называется линейной комбинацией элементов с коэффициентами .

Линейная комбинация называется нетривиальной, если хотя бы один из её коэффициентов отличен от нуля.

  • Элементы называются линейно зависимыми, если существует их нетривиальная линейная комбинация, равная нулевому элементу . В противном случае эти элементы называются линейно независимыми.
  • Бесконечное подмножество векторов из называется линейно зависимым, если линейно зависимо его некоторое конечное подмножество, и линейно независимым, если любое его конечное подмножество линейно независимо.
  • Число элементов (мощность) максимального линейно независимого подмножества пространства не зависит от выбора этого подмножества и называется рангом, или размерностью, пространства, а само это подмножество — базисом (базисом Га́меля или линейным базисом). Элементы базиса также называют базисными векторами. Свойства базиса:
    • Любые линейно независимых элементов -мерного пространства образуют базис этого пространства.

o Любой вектор можно представить (единственным образом) в виде конечной линейной комбинации базисных элементов: .

Линейная оболочка

Линейная оболочка

подмножества линейного пространства — пересечение всех подпространств , содержащих .

Линейная оболочка является подпространством .

Линейная оболочка также называется подпространством, порожденным . Говорят также, что линейная оболочка натянута на множество .

Линейная оболочка

состоит из всевозможных линейных комбинаций различных конечных подсистем элементов из .

В частности, если — конечное множество, то состоит из всех линейных комбинаций элементов

Если — линейно независимое множество, то оно является базисом

и тем самым определяет его размерность.

26)

  • Конечная сумма вида

называется линейной комбинацией элементов с коэффициентами .

Линейная комбинация называется нетривиальной, если хотя бы один из её коэффициентов отличен от нуля.

  • Элементы называются линейно зависимыми, если существует их нетривиальная линейная комбинация, равная нулевому элементу . В противном случае эти элементы называются линейно независимыми.
  • Бесконечное подмножество векторов из называется линейно зависимым, если линейно зависимо его некоторое конечное подмножество, и линейно независимым, если любое его конечное подмножество линейно независимо.
  • Число элементов (мощность) максимального линейно независимого подмножества пространства не зависит от выбора этого подмножества и называется рангом, или размерностью, пространства, а само это подмножество — базисом (базисом Га́меля или линейным базисом). Элементы базиса также называют базисными векторами. Свойства базиса:
    • Любые линейно независимых элементов -мерного пространства образуют базис этого пространства.
    • Любой вектор можно представить (единственным образом) в виде конечной линейной комбинации базисных элементов:

.

 

Конечномерный случай

Ортогональный базис — базис, составленный из попарно ортогональных векторов.

Ортонормированный базис в 3-мерном евклидовом пространстве

Ортонормированный базис удовлетворяет еще и условию единичности нормы всех его элементов. То есть это ортогональный базис с нормированными элементами.

Последнее удобно записывается при помощи символа Кронекера:

то есть скалярное произведение каждой пары базисных векторов равно нулю, когда они не совпадают ( ), и равно единице при совпадающем индексе, то есть когда берется скалярное произведение любого базисного вектора с самим собой.

Очень многое записывается в ортогональном базисе гораздо проще, чем в произвольном, поэтому очень часто стараются использовать именно такие базисы, если только это возможно или использование какого-то специального неортогонального базиса не дает особых специальных удобств. Или если не отказываются от него в пользу базиса общего вида из соображений общности.

Ортонормированный базис является самодуальным (дуальный ему базис совпадает с ним самим). Поэтому в нём можно не делать различия между верхними и нижними индексами, и пользоваться, скажем, только нижними (как обычно и принято, если конечно при этом используются только ортонормированные базисы).

Линейная независимость следует из ортогональности, то есть достигается для ортогональной системы векторов автоматически.

Коэффициенты в разложении вектора по ортогональному базису:

можно найти так:

.

Полнота ортонормированной системы векторов эквивалентна равенству Парсеваля: для любого вектора квадрат нормы вектора равен сумме квадратов коэффициентов его разложения по базису:

Аналогичные соотношения имеют место и для бесконечномерного случая (см. ниже).

Бесконечномерный случай

Ортогональный базис — система попарно ортогональных элементов гильбертова пространства такая, что любой элемент однозначно представим в виде сходящегося по норме ряда

называемого рядом Фурье элемента по системе .

Часто базис выбирается так, что , и тогда он называется ортонормированным базисом. В этом случае числа , называются коэффициентами Фурье элемента по ортонормированному базису , имеют вид .

Необходимым и достаточным условием того, чтобы ортонормированная система была базисом, является равенство Парсеваля.

Гильбертово пространство, имеющее ортонормированный базис, является сепарабельным, и обратно, во всяком сепарабельном гильбертовом пространстве существует ортонормированный базис.

Если задана произвольная система чисел такая, что , то в случае гильбертова пространства с ортонормированным базисом ряд — сходится по норме к некоторому элементу . Этим устанавливается изоморфизм любого сепарабельного гильбертова пространства пространству (теорема Рисса — Фишера).

27)

Пусть в пространстве имеется два базиса: и .

Первый условимся называть старым базисом, второй – новым. Каждый из векторов нового базиса, по Теореме 5.1, можно линейно выразить через векторы старого базиса:

(5.1)

Новые базисные векторы получаются из старых с помощью матрицы

При этом коэффициенты их разложений по старым базисным векторам образуют столбцы этой матрицы. Матрица называется матрицей перехода от базиса к базису .

Определитель матрицы не равен нулю, так как в противном случае ее столбцы, а следовательно и векторы , были бы линейно зависимы.

Обратно, если , то столбцы матрицы линейно независимы, и следовательно векторы , получающиеся из базисных векторов с помощью матрицы , линейно независимы и значит образуют некоторый базис. Таким образом, матрицей перехода может служить любая квадратная матрица порядка n с отличным от нуля определителем.

Рассмотрим теперь, как связаны между собой координаты одного и того же вектора в старом и новом базисах. Пусть в старом базисе и - в новом. Подставляя в последнее равенство вместо их выражение из (5.1), получим, что

Таким образом, старые координаты вектора получатся из новых его координат с помощью той же матрицы , только коэффициенты соответствующих разложений образуют строки этой матрицы.

28)

Линейный оператор A действует из n-мерного линейного пространства X в m-мерное линейное пространство Y .

В этих пространствах определены базисы e = {e1, ..., en} и f = {f1, ..., fm}.

Пусть A(ei ) = a1i·f1 + a2i·f2 + ...+ ami·fm — разложение образа i-го базисного вектора базиса e пространства X по базису fпространства Y, i = 1, 2, ..., n.

Матрицей линейного оператора в базисах e, f называется матрица A, столбцами которой являются координаты образов базисных векторов базиса e в базисе f , A = {aij}= {A(ej )i}:

Координаты образа y = A(x) и прообраза x связаны соотношеннием: y =A· x,

Последнее изменение этой страницы: 2016-06-08

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...