Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Глава 12. Риски, связанные с природными катастрофами

12.1 Вселенские катастрофы

Теоретически возможны катастрофы, которые изменят всю Вселенную как целое, по масштабу равновеликие Большому взрыву. Из статистических соображений вероятность их меньше чем 1 % в ближайший миллиард лет, как показали Бостром и Тегмарк [Bostrom, Tegmark 2005]. Однако истинность рассуждений Бострома и Тегмарка зависит от истинности их базовой посылки – а именно о том, что разумная жизнь в нашей Вселенной могла бы возникнуть и несколько миллиардов лет назад. Посылка эта базируется на том, что тяжёлые элементы, необходимые для существования жизни, возникли уже через несколько миллиардов лет после возникновения Вселенной, задолго до формирования Земли. Очевидно, однако, что степень достоверности, которую мы можем приписать этой посылке, меньше, чем 100 миллиардов к 1, поскольку у нас нет прямых её доказательств – а именно следов ранних цивилизаций. Более того, явное отсутствие более ранних цивилизаций (парадокс Ферми) придаёт определённую достоверность противоположной посылке – а именно, что человечество возникло исключительно, крайне маловероятно рано по отношению к большинству других возможных цивилизаций. Возможно, что существование тяжелых элементов – не единственное необходимое условие для возникновения разумной жизни, и есть и другие условия, например, что частота вспышек близких квазаров и гиперновых значительно уменьшилась (а плотность этих объектов действительно убывает по мере расширения вселенной и исчерпания водородных облаков). Бостром и Тегмарк пишут: «Можно подумать, что раз жизнь здесь, на Земле, выжила в течение примерно 4 Гигалет, такие катастрофические события должны быть исключительно редкими. К сожалению, этот аргумент несовершенен, и создаваемое им чувство безопасности – фальшиво. Он не принимает во внимание эффект наблюдательной селекции, который не позволяет любому наблюдателю наблюдать что-нибудь ещё, кроме того, что его вид дожил до момента, когда они сделали наблюдение. Даже если бы частота космических катастроф была бы очень велика, мы по-прежнему должны ожидать обнаружить себя на планете, которая ещё не уничтожена. Тот факт, что мы всё ещё живы, не может даже исключить гипотезу, что в среднем космическое пространство вокруг стерилизуется распадом вакуума, скажем, каждые 10 000 лет, и что наша собственная планета просто была чрезвычайно удачливой до сих пор. Если бы эта гипотеза была верна, перспективы будущего были бы унылы». И хотя далее Бостром и Тегмарк отвергают предположение о высокой частоте «стерилизующих катастроф», основываясь на позднем времени существования земли, мы не можем принять этот их вывод, поскольку, как мы говорили выше, посылка, на которой он основан, ненадёжна. Это не означает, однако, неизбежность близкого вымирания в результате вселенской катастрофы. Единственный наш источник знаний о возможных вселенских катастрофах – теоретическая физика, поскольку, по определению, такой катастрофы ни разу не случалось за время жизни Вселенной (за исключением самого большого Взрыва). Теоретическая физика порождает огромное количество непроверенных гипотез, а в случае вселенских катастроф они могут быть и принципиально непроверяемыми. Отметим также, что исходя из сегодняшнего понимания, мы никаким образом не можем ни предотвратить вселенскую катастрофу, ни защитится от неё (хотя, может быть, можем ее спровоцировать – см. раздел об опасных физических экспериментах.) Обозначим теперь список возможных – с точки зрения некоторых теоретиков – вселенских катастроф:

1. Распад фальшивого вакуума. Проблемы фальшивого вакуума мы уже обсуждали в связи с физическими экспериментами.

2. Столкновение с объектом в многомерном пространстве – браной. Есть предположения, что наша Вселенная – это только объект в многомерном пространстве, называемый браной[78] (от слова «мембрана»). Большой взрыв – это результат столкновения нашей браны с другой браной. Если произойдёт ещё одно столкновение, то оно разрушит сразу весь наш мир.

3. большой разрыв. Недавно открытая тёмная энергия приводит, как считается, ко всё более ускоренному расширению Вселенной. Если скорость расширения будет расти, то когда-нибудь это разорвёт Солнечную систему. Но будет это через десятки миллиардов лет по современным теориям [Caldwell et al 2003].

4. Переход остаточной тёмной энергии в материю. Недавно было высказано предположение, что эта тёмная энергия может внезапно перейти в обычную материю, как это уже было во времена большого взрыва[79].

5. Другие классические сценарии гибели Вселенной – это тепловая смерть, связанная с ростом энтропии и выравниваем температуры во Вселенной и сжатие Вселенной благодаря гравитационным силам. Но они опять же отстоят от нас на десятки миллиардов лет.

6. Можно предположить существование некого физического процесса, который делает Вселенную непригодной для обитания после некоторого момента времени (как ее делало непригодной для обитания интенсивное излучение ядер галактик – квазаров в первые миллиарды лет существования). Например, таким процессом может быть испарение первородных чёрных дыр за счёт хокинговского излучения. Если это так, мы существуем в узком промежутке времени, когда Вселенная обитаема – точно также, как Земля находится в узком пространстве обитаемой зоны вокруг Солнца, а Солнце – в узкой области галактики, где частота его вращения синхронизирована с вращением ветвей галактики, благодаря чему оно не попадает внутрь этих ветвей и не подвергается воздействию сверхновых.

7. Если наш мир некоторым образом возник из ничего совершенно неведомым нам образом, то что ему мешает также внезапно исчезнуть?

12.2 Геологические катастрофы

Геологические катастрофы убивают в миллионы раз больше людей, чем падения астероидов, однако они, исходя из современных представлений, ограничены по масштабам. Всё же это заставляет предположить, что глобальные риски, связанные с процессами внутри Земли, превосходят космические риски. Возможно, что есть механизмы выделения энергии и ядовитых газов из недр Земли, с которыми мы просто не сталкивались в силу эффекта наблюдательной селекции.

12.3 Извержения сверхвулканов

Вероятность извержения сверхвулкана соразмерной интенсивности значительно больше, чем вероятность падения астероида. Однако предотвратить и даже предсказать это событие современная наука не в силах. (в будущем, возможно, удастся постепенно стравливать давление из магматических камер, но это само по себе опасно, так как потребует сверления их кровель.) Основная поражающая сила сверхизвержения – вулканическая зима. Она короче ядерной, так как частицы вулканического пепла тяжелее, но их может быть значительно больше. В этом случае вулканическая зима может привести к новому устойчивому состоянию – новому ледниковому периоду.

Крупное извержение сопровождается выбросом ядовитых газов – в том числе соединений серы. При очень плохом сценарии это может дать значительное отравление атмосферы. Это отравление не только сделает её малопригодной для дыхания, но и приведёт к повсеместным кислотным дождям, которые сожгут растительность и лишат людей урожаев. Возможны также большие выбросы диоксида углерода и водорода.

Наконец, сама вулканическая пыль опасна для дыхания, так как засоряет лёгкие. Люди легко смогут обеспечить себя противогазами и марлевыми повязками, но не факт, что их хватит для скота и домашних животных. Кроме того, вулканическая пыль попросту засыпает огромные поверхности, а также пирокластические потоки могут распространяться на значительные расстояния. Наконец, взрывы сверхвулканов порождают цунами.

Всё это означает, что люди, скорее всего, переживут извержение сверхвулкана, но оно со значительной вероятностью отправит человечество на одну из постапокалиптических стадий. Однажды человечество оказалось на грани вымирания из-за вулканической зимы, вызванной извержением вулкана Тоба 74 000 лет назад. Однако современные технологии хранения пищи и строительства бункеров позволяют значительной группе людей пережить вулканическую зиму такого масштаба.

В древности имели место колоссальные площадные извержения вулканов, которые затопили миллионы квадратных километров расплавленной лавой – в Индии на плато Декан во времена вымирания динозавров (возможно, извержение было спровоцировано падением астероида с противоположной стороны земли, в Мексике), а также на Восточно-Сибирской платформе. Есть сомнительное предположение, что усиление процессов водородной дегазации на русской равнине является предвестником появления нового магматического очага[80]. Также есть сомнительное предположение о возможности катастрофического растрескивания земной коры по линиям океанических разломов и мощных взрывов пара под корой[81].

Интересным остаётся вопрос о том, увеличивается ли общая теплота внутри Земли за счёт распада радиоактивных элементов, или наоборот, убывает за счёт охлаждения теплоотдачей. Если увеличивается, то вулканическая активность должна возрастать на протяжении сотен миллионов лет. (А. Азимов пишет в книге «Выбор катастроф» [Азимов 1981], в связи с ледниковыми периодами: «По вулканическому пеплу в океанских отложениях можно заключить, что вулканическая деятельность в последние 2 миллиона лет была примерно в четыре раза интенсивнее, чем за предыдущие 18 миллионов лет».)

12.4 Падение астероидов

Падение астероидов и комет часто рассматривается как одна из возможных причин вымирания человечества. И хотя такие столкновения вполне возможны, шансы тотального вымирания в результате них, вероятно, преувеличиваются. См. статьи Пустынского «Последствия падения на Землю крупных астероидов» [Пустынский 1999] и Вишневского «Импактные события и вымирания организмов» [Вишневский б.д.]. В последней статье делается вывод, что «астероид диаметром около 60 км может стать причиной гибели всех высокоорганизованных форм жизни на Земле». Однако такого размера астероиды падают на землю крайне редко, раз в миллиарды лет. (Упавший астероид, одновременный вымиранию динозавров, имел только 10 км в диаметре, то есть был примерно в 200 раз меньше по объёму, и большая часть биосферы благополучно пережила это событие.)

Падение астероида Апофис, которое могло бы произойти в 2029 году (сейчас вероятность оценивается тысячными долями процента), никак не может погубить человечество. Размер астероида – около 400 метров, энергия взрыва – порядка 800 мегатонн, вероятное место падения – Тихий океан и Мексика. Тем не менее, астероид вызвал бы цунами, равносильное индонезийскому 2004 года (только 1 процент энергии землетрясения переходит в цунами, а энергия землетрясения тогда оценивается в 30 гигатонн) по всему тихому океану, что привело бы к значительным жертвам, но вряд ли бы отбросило человечество на постапокалиптическую стадию.

2,2 миллиона лет назад комета диаметром 0,5-2 км (а значит, со значительно большей энергией) упала между южной Америкой и Антарктидой (Элтанинская катастрофа[82]). Волна в 1 км высотой выбрасывала китов в Анды. Тем не менее, предки современных людей, жившие в Африке, не пострадали. В окрестностях земли нет астероидов с размерами, которые могли бы уничтожить всех людей и всю биосферу. Однако кометы такого размера могут приходить из облака Оорта. В статье Нейпьера и др. «Кометы с низкой отражающей способностью и риск космических столкновений» [Napier et al 2004] показывается, что число опасных комет может существенно недооцениваться, так как наблюдаемое количество комет в 1000 раз меньше ожидаемого – это связано с тем, что кометы после нескольких пролётов вокруг Солнца покрываются тёмной коркой, перестают отражать свет и становятся незаметными. Такие тёмные кометы необнаружимы современными средствами. Кроме того, выделение комет из облака Оорта зависит от приливных сил, создаваемых Галактикой на Солнечную систему. Эти приливные силы возрастают, когда Солнце проходит через более плотные области Галактики, а именно, через спиральные рукава и галактическую плоскость. И как раз сейчас мы проходим через галактическую плоскость, что означает, что в нынешнюю эпоху кометная бомбардировка в 10 раз сильнее, чем в среднем за историю Земли. Нейпьер связывает предыдущие эпохи интенсивных кометных бомбардировок с массовыми вымираниями 65 и 251 млн. лет назад.

Международная группа Holocene Impact Working Group (группа исследований импактов в период Голоцена) собрала свидетельства о трёх столкновениях Земли с кометами километрового размера за последние 5000 лет. В то же время прежние оценки частоты таких столкновений говорят о том, что такие столкновения должны были иметь место только раз 500 000 лет. Это означает, как подчёркивает Нейпьер [Napier 2008], что мы живём в период эпизода бомбардировки, связанного с распадом крупной кометы, пришедшей из облака Оорта, и нынешняя частота бомбардировки примерно в 200 раз выше нормальной. Обломками этой кометы являются метеоритный поток Тауриды, комета Энке и Тунгусский метеорит. Однако неизвестно, какое число тёмных объектов скрывается в этих потоках.

Основным поражающим фактором при падении астероида стала бы не только волнацунами, но и «астероидная зима», связанная с выбросом частиц пыли в атмосферу. Падение крупного астероида может вызвать деформации в земной коре, которые приведут к извержениям вулканов. Кроме того, крупный астероид вызовет всемирное землетрясение, опасное в первую очередь для техногенной цивилизации.

Более опасен сценарий интенсивной бомбардировки Земли множеством осколков. Тогда удар будет распределяться более равномерно и потребует меньшего количества материала. Эти осколки могут возникнуть в результате распада некого космического тела (см. далее об угрозе взрыва Каллисто), расщепления кометы на поток обломков (тунгусский метеорит был, возможно, осколком кометы Энке), в результате попадания астероида в Луну или в качестве вторичного поражающего фактора от столкновения Земли с крупным космическим телом. Многие кометы уже состоят из групп обломков, а также могут разваливаться в атмосфере на тысячи кусков. Это может произойти и в результате неудачной попытки сбить астероид с помощью атомного оружия.

Падение астероидов может провоцировать извержение сверхвулканов, если астероид попадёт в тонкий участок земной коры или в крышку магматического котла вулкана, или если сдвиг пород от удара растревожит отдалённые вулканы. Расплавленные железные породы, образовавшиеся при падении железного астероида, могут сыграть роль «зонда Стивенсона» – если он вообще возможен, – то есть проплавить земную кору и мантию, образовав канал в недра земли, что чревато колоссальной вулканической активностью. Хотя обычно этого не происходило при падении астероидов на Землю, лунные «моря» могли возникнуть именно таким образом. Кроме того, излияния магматических пород могли скрыть кратеры от таких астероидов. Такими излияниями являются Сибирские трапповые базальты и плато Декан в Индии. Последнее одновременно двум крупным импактам (Чиксулуб и кратер Шивы). Можно предположить, что ударные волны от этих импактов, или третье космическое тело, кратер от которого не сохранился, спровоцировали это извержение. Не удивительно, что несколько крупных импактов происходят одновременно. Например, ядрам комет свойственно состоять из нескольких отдельных фрагментов – например, комета Шумейкера-Леви, врезавшаяся в Юпитер в 1994 году, оставила на нём пунктирный след, так как к моменту столкновения уже распалась на фрагменты. Кроме того, могут быть периоды интенсивного образования комет, когда солнечная система проходит рядом с другой звездой. Или в результате столкновения астероидов в поясе астероидов[83].

Гораздо опаснее воздушные взрывы метеоритов в несколько десятков метров диаметром, которые могут вызвать ложные срабатывания систем предупреждения о ядерном нападении, или попадания таких метеоритов в районы базирования ракет.

Пустынский в своей статье приходит к следующим выводам, с которыми я полностью солидарен: «Согласно оценкам, сделанным в настоящей статье, предсказание столкновения с астероидом до сих пор не гарантировано и является делом случая. Нельзя исключить, что столкновение произойдёт совершенно неожиданно. При этом для предотвращения столкновения необходимо иметь запас времени порядка 10 лет. Обнаружение астероида за несколько месяцев до столкновения позволило бы эвакуировать население и ядерно-опасные предприятия в зоне падения. Столкновение с астероидами малого размера (до 1 км диаметром) не приведёт к сколько-нибудь заметным общепланетным последствиям (исключая, конечно, практически невероятное прямое попадание в район скопления ядерных материалов). Столкновение с более крупными астероидами (примерно от 1 до 10 км диаметром, в зависимости от скорости столкновения) сопровождается мощнейшим взрывом, полным разрушением упавшего тела и выбросом в атмосферу до нескольких тысяч куб. км. породы. По своим последствиям это явление сравнимо с наиболее крупными катастрофами земного происхождения, такими как взрывные извержения вулканов. Разрушение в зоне падения будут тотальными, а климат планеты скачкообразно изменится и придёт в норму лишь через несколько лет (но не десятилетий и столетий!) Преувеличенность угрозы глобальной катастрофы подтверждается тем фактом, что за свою историю Земля перенесла множество столкновений с подобными астероидами, и это не оставило доказано заметного следа в её биосфере (во всяком случае, далеко не всегда оставляло). Лишь столкновение с более крупными космическими телами (диаметром более ~15-20 км) может оказать более заметное влияние на биосферу планеты. Такие столкновения происходят реже, чем раз в 100 млн. лет, и у нас пока нет методик, позволяющих даже приблизительно рассчитать их последствия» [Пустынский 1993].

Итак, вероятность гибели человечества в результате падения астероида в XXI веке крайне мала. Однако вероятность падения тела километрового диаметра, которое может серьёзно подорвать нашу цивилизацию, составляет около 6%, если принять тот факт, что мы живём в период интенсивной бомбардировки (если принять частоты: три события за 5000 лет). По мере развития нашей цивилизации мы можем неограниченно эту вероятность уменьшать. Однако крупные катастрофы возможны. Есть некоторый шанс засорения космического пространства крупными осколками в результате космической войны в будущем.

Кроме того, разрушение комет может вызвать интенсивное запыление верхних слоёв земной атмосферы даже без крупных импактов, как подчёркивает Нейпьер.

12.5 Зона поражения в зависимости от силы взрыва

Здесь мы рассмотрим поражающее действие взрыва в результате падения астероида (или по любой другой причине). Подробный анализ с аналогичными выводами см. в статье пустныского.

Зона поражения растёт очень медленно с ростом силы взрыва, что верно как для астероидов, так и для сверхмощных атомных бомб. Хотя энергия воздействия падает пропорционально квадрату расстояния от эпицентра, при гигантском взрыве она падает гораздо быстрее, во-первых, из-за кривизны Земли, которая как бы защищает то, что находится за горизонтом (поэтому атомные взрывы наиболее эффективны в воздухе, а не на земле), а во-вторых, из-за того, что способность материи упруго передавать ударную волну ограничена неким пределом сверху, и вся энергия сверх того не передаётся, а превращается в тепло в районе эпицентра. Например, в океане не может возникнуть волна выше его глубины, а поскольку эпицентр взрыва точечный (в отличие от эпицентра обычного цунами, который представляет собой линию разлома), она затем будет убывать линейно в зависимости от расстояния. Избыточное тепло, образовавшееся при взрыве, или излучается в космос, или остаётся в виде озера расплавленного вещества в эпицентре. Солнце доставляет за сутки на землю световую энергию порядка 1000 гигатонн (10 джоулей), поэтому роль теплового вклада сверхвзрыва в общую температуру земли невелика. (С другой стороны, механизмом распространения тепла от взрыва будет скорее не движение потоков раскалённого воздуха, а выброшенные взрывом кубические километры осколков с массой, сопоставимой с массой самого астероида, но меньшей энергии, многие из которых будут иметь скорость, близкую к первой космической, и в силу этого лететь по баллистическим траекториям, как летят межконтинентальные ракеты. За час они достигнут всех уголков Земли, и хотя они, действуя как кинетическое оружие, поразят не каждую точку на поверхности, они выделят при своём входе в атмосферу огромные количества энергии, то есть прогреют атмосферу по всей площади Земли, возможно, до температуры возгорания дерева, что ещё более усугубит процесс.)

Мы можем ориентировочно считать, что зона разрушения растёт пропорционально корню 4 степени от силы взрыва (точные значения определяются военными эмпирически в результате испытаний и лежат между степенями 0,33 и 0,25, при этом зависят от сила взрыва, высоты, и т. д.). При этом каждая тонна массы метеорита даёт примерно 100 тонн тротилового эквивалента энергии – в зависимости от скорости столкновения, которая обычно составляет несколько десятков километров в секунду. (В этом случае каменный астероид в 1 куб. км. размером даст энергию в 300 Гигатонн. Плотность комет значительно меньше, но они могут рассыпаться в воздухе, усиливая удар, и, кроме того, движутся по крутым орбитам с гораздо большими скоростями.) Принимая, что радиус сплошного поражения от водородной бомбы в 1 мегатонну составляет 10 км, мы можем получить радиусы поражения для астероидов разных размеров, считая, что радиус поражения убывает пропорционально четвёртой степени сила взрыва. Например, для астероида в 1 куб. км это будет радиус в 230 км. Для астероида диаметром в 10 км это будет радиус в 1300 км. Для 100 км астероида это будет радиус поражения порядка 7000 км. Для того, чтобы этот радиус гарантированного поражения стал больше, чем половина широты земли (20 000 км), то есть гарантированно покрывал всю Землю, астероид должен иметь размеры порядка 400 км. (Если считать, что радиус поражения растёт как корень третьей степени, то это будет диаметр уничтожающего всё астероида около 30 км. Реальное значение лежит между этими двумя цифрами (30-400 км), сюда же попадает и оценка Пустынского, выполненная им независимо: 60 км.)

Хотя данные вычисления крайне приблизительны, из них видно, что даже тот астероид, который связывают с вымиранием динозавров, вовсе не поразил всю территорию Земли, и даже не весь континент, где он упал. А вымирание, если и было связано с астероидом (сейчас считается, что там сложная структура причин), то было вызвано не самим ударом, а последующим эффектом – «астероидной зимой», связанной с переносом пыли атмосферой. Также столкновение с астероидом может вызывать электромагнитный импульс, как у атомной бомбы, за счёт быстрого движения плазмы. Кроме того, интересно задаться вопросом, не могут ли возникнуть термоядерные реакции при столкновении с кометой, если её скорость будет близка к максимально возможной около 100 км/сек (комета на встречном курсе, наихудший случай), так как в точке удара может возникнуть температура в миллионы градусов и огромное давление, как при имплозии в ядерной бомбе. И даже если вклад этих реакций в энергию взрыва будет мал, он может дать радиоактивное загрязнение.

Сильный взрыв создаст сильное химическое загрязнение всей атмосферы, хотя бы окислами азота, которые будут образовывать дожди из азотной кислоты. И сильный взрыв засорит атмосферу пылью, что создаст условия для ядерной зимы.

Из сказанного следует, что атомная сверхбомба была бы страшна не силой своего взрыва, а количеством радиоактивных осадков, которые бы она произвела. Кроме того, видно, что земная атмосфера выступает в качестве мощнейшего фактора распространения воздействий.

 

12.6 Астероидная опасность в контексте технологического развития

 

Нетрудно заметить, что прямые риски столкновения с астероидом убывают по мере технологического развития. В первую очередь, они убывают за счёт более точного измерения этой самой вероятности – то есть за счёт всё более точного обнаружения опасных астероидов и измерения их орбит. (Однако, если подтвердятся предположения, что мы живём в течение эпизода кометной бомбардировки, то оценка рисков возрастёт в 100 раз к фону.) Во-вторых, они убывают за счёт роста наших способностей отклонять астероиды.

С другой стороны, последствия падения астероидов становятся всё большими – хотя бы потому что плотность населения растёт, а также растёт связность мировой системы, в результате чего ущерб в одном месте может экономически аукнуться по всей планете.

Иначе говоря, хотя вероятность столкновения снижается, косвенные риски, связанные с астероидной опасностью, возрастают.

Основные косвенные риски таковы:

А) разрушение опасных производств в месте падения – например, атомной станции. Вся масса станции в таком случае испарится и выброс радиации будет больше, чем в Чернобыле. Кроме того, возможны дополнительные ядерные реакции при резком сжатии станции при попадании в неё астероида. Всё же шансы на прямое попадание астероида в ядерную станцию малы, но они растут по мере роста числа станций.

Б) Есть риск того, что даже небольшая группа метеоров, двигающихся под определённым углом в определённом месте земной поверхности может привести к срабатыванию системы о предупреждении ракетном ударе и привести к случайной ядерной войне. Те же последствия будут и у воздушного взрыва небольшого астероида (несколько метров в размере). Первый вариант более вероятен для сверхдержав с развитой (но имеющей огрехи или незакрытые участки, как в РФ) системой предупреждения о ракетном нападении, тогда как второй – для региональных ядерных держав (вроде Индии и Пакистана, Северной Корее и т. д.), не могущих отследить подлёт ракет, но могущих среагировать на единичный взрыв.

В) Технология управления движением астероидов в будущем создаст гипотетическую возможность направлять астероиды не только от Земли, но и к ней. И даже если будет иметь место случайное падение астероида, будут разговоры о том, что не был ли он направлен нарочно. Всё же вряд ли кто-то будет направлять астероиды к Земле, так как такое действие легко обнаружить, точность попадания невелика, а делать это надо за десятки лет.

Г) Для надежного отклонения астероидов потребуется создание космического оружия, которое может быть ядерным, лазерным или кинетическим. Такое оружие может быть использовано и против Земли или против космических аппаратов вероятного противника. Хотя риск применения его против Земли невелик, он всё же создаёт больший потенциальный ущерб, чем падение астероидов.

Д) разрушение астероида ядерным взрывом приведёт к увеличению его поражающей силы за счёт его осколков – большее число взрывов на большей площади, а также к радиоактивному заражению обломков.

Современными техническими средствами возможно отклонить только относительно небольшие астероиды, непредставляющие глобальной угрозы. Реальную опасность представляют почерневшие кометы размерном в несколько километров, двигающиеся по вытянутым эллиптическим орбитам с большой скоростью. Однако в будущем космос можно будет быстро и дёшево осваивать с помощью самовоспроизводящихся роботов, основанных на нанотехе. Это позволит создать в космосе огромные радиотелескопы, способные обнаружить все опасные тела в Солнечной системе. Кроме того, достаточно будет высадить одного микроробота на астероид, чтобы он размножился на нём а затем разобрал его на части или построил двигатель, который изменит его орбиту. Нанотех позволит создать самоподдерживающиеся человеческие поселения на Луне и других небесных телах. Это позволяет предполагать, что проблема астероидной опасности станет через несколько десятков лет неактуальной.

Таким образом, проблема предотвращения столкновений Земли с астероидами в ближайшие десятилетия может быть только отвлечением ресурсов от глобальных рисков.

Во-первых, потому что те мы всё равно не можем отклонить те объекты, которые реально могут привести к полному вымиранию человечества.

Во-вторых, к тому моменту (или вскоре после него), когда система ракетно-ядерного уничтожения астероидов будет создана, она устареет, так как с помощью нанотеха можно будет быстро и дёшево осваивать Солнечную систему к середине XXI века, а может, и раньше.

В-третьих, потому что такая система в условиях, когда Земля разделена на враждующие государства, станет оружием в случае войны.

В-четвёртых, потому что вероятность вымирания человечества в результате падения астероида в тот узкий промежуток времени, когда система отклонения астероидов будет уже развёрнута, но мощные нанотехнологии ещё не будут созданы, крайне мала. Этот промежуток времени может быть равен 20 годам, скажем, от 2030 – до 2050, и шансы падения 10-километрового тела за это время, даже если предположить, что мы живём в период кометной бомбардировки, когда интенсивность падений в 100 раз выше, составляет 1 к 15 000 (исходя из средней частоты падения таких тел раз в 30 млн. лет). Более того, если учесть динамику, то действительно опасные объекты мы сможем отклонять только к концу этого срока, а может быть и ещё позже, так как, чем больше астероид, тем более масштабный и длительный проект по его отклонению требуется. Хотя 1 к 15 000 – это всё же неприемлемо большой риск, он соизмерим с риском применения космического оружия против Земли.

В-пятых, антиастеродная защита отвлекает внимание от других глобальных проблем, в связи с ограниченностью человеческого внимания и финансовых ресурсов. Это связано с тем, что астероидная опасность очень удобна для понимания – ее легко представить, легко вычислить вероятности и она понятна широкой публике. И нет никаких сомнений в ее реальности и хорошо понятно, как можно защитится. (Например, вероятность вулканической катастрофы, сравнимой с астероидной, по разным оценкам, от 5 до 20 раз выше при том же уровне энергии – но нет никаких идей, как ее можно предотвратить.) Этим она отличается от других рисков, которые труднее представить, которые невозможно оценить количественно, но которые могут означать вероятность полного вымирания в десятки процентов. Речь идёт от рисках ИИ, биотеха, нанотеха и ядерного оружия.

В-шестых, если говорить об относительно небольших телах, вроде Апофиса, то может быть дешевле эвакуировать область падения, чем отклонять астероид. А, скорее всего, областью падения будет океан.

Всё же я не призываю отказаться от антиастеродной защиты, потому что сначала надо выяснить, не живём ли мы в период кометной бомбардировки. В этом случае вероятность падения километрового тела в ближайшие 100 лет равна 6 процентам. (Исходя из данных о гипотетических падения в последние 10 000 лет вроде кометы Кловиса http://en.wikipedia.org/wiki/Younger_Dryas_impact_event, следами которой могут быть 500 000 похожих на кратеры образований называемых Каролина Бейз http://en.wikipedia.org/wiki/Carolina_bays и кратер около новой Зеландии 1443 года http://en.wikipedia.org/wiki/Mahuika_crater и др). Надо в первую очередь бросить силы на мониторинг тёмных комет и на анализ свежих кратеров.

12.7 Солнечные вспышки и увеличение светимости

То, что нам известно о Солнце, не даёт оснований для беспокойства. Солнце не может взорваться. Только наличие неизвестных нам или крайне маловероятных процессов может привести к вспышке (коронарному выбросу), которая сильно опалит землю в XXI веке. Но у других звёзд бывают вспышки, в миллионы раз превосходящие солнечные. Однако изменение светимости солнца оказывает влияние на изменение климата земли, что доказывает совпадение времени малого ледникового периода в XVII веке с минимумом солнечных пятен Маундера[84]. Возможно, с колебаниями светимости связаны и ледниковые периоды.

Процесс постепенного увеличения светимости солнца (на 10 процентов каждые миллиард лет[85]) приведёт к выкипанию океанов – с учётом других факторов потепления –в течение 1 млрд. лет[86] (то есть гораздо раньше, чем солнце станет красным гигантом и, тем более, белым карликом). Однако по сравнению с исследуемым нами промежутком в 100 лет этот процесс незначителен (если только он не сложился вместе с другими процессами, ведущими к необратимому глобальному потеплению – см. далее).

Есть предположения, что по мере выгорания водорода в центральной части Солнца, что уже происходит, будет расти не только светимость Солнца (светимость растёт за счёт роста его размеров, а не температуры поверхности), но и нестабильность его горения. Возможно, что последние ледниковые периоды связаны с этим уменьшением стабильности горения. Это понятно на следующей метафоре: когда в костре много дров, он горит ярко и устойчиво, но когда большая часть дров прогорает, он начинает то немного гаснуть, то ярко вспыхивать снова, когда находит несгоревшую ветку.

Уменьшение концентрации водорода в центре солнца может спровоцировать такой процесс как конвекцию, которая обычно в ядре Солнца не происходит, в результате чего в ядро поступит свежий водород [Шкловский 1984]. Возможен ли такой процесс, будет ли он плавным или катастрофическим, займёт ли годы или миллионы лет, трудно сказать. Шкловский предполагал, что в результате конвекций температура Солнца падает каждые 200 млн. лет на период порядка 10 млн., и что мы живём в середине такого периода. То есть опасно завершение этого процесса, когда свежее топливо наконец поступит в ядро и светимость солнца возрастёт. (Однако это маргинальная теория, и в настоящий момент разрешена одна из основных проблем, которая её породила – проблема солнечных нейтрино.)

Важно, однако, подчеркнуть, что как сверхновая или новая Солнце, исходя из наших физических представлений, вспыхнуть не может.

Вместе с тем, чтобы прервать разумную жизнь на Земле, Солнцу достаточно разогреться на 10 процентов за 100 лет (что повысило бы температуру на Земле на 10-20 градусов без парникового эффекта, но с учётом парникового эффекта, скорее всего, оказалось бы выше критического порога необратимого потепления). Такие медленные и редкие изменения температуры звёзд солнечного типа было бы трудно заметить астрономическими методами при наблюдении солнцеподобных звёзд – поскольку только недавно достигнута необходимая точность оборудования. (Кроме того, возможен логический парадокс следующего вида: солнцеподобные звёзды – это стабильные звёзды спектрального класса G7 по определению. Не удивительно, что в результате их наблюдения мы обнаруживаем, что эти звёзды стабильны.)

Итак, один из вариантов глобальной катастрофы состоит в том, что в результате неких внутренних процессов светимость солнца устойчиво возрастёт на опасную величину (и мы знаем, что рано или поздно это произойдёт). В настоящий момент Солнце находится на восходящем вековом тренде своей активности, но никаких особых аномалий в его поведении замечено не было. Вероятность того, что это случится именно в XXI веке, – ничтожно мала.

Второй вариант глобальной катастрофы, связанной с Солнцем, состоит в том, что сложатся два маловероятных события – на Солнце произойдёт очень крупная вспышка и выброс этой вспышки будет направлен на Землю. В отношении распределения вероятности такого события можно предположить, что здесь действует тот же эмпирический закон, что и относительно землетрясений и вулканов: 20-кратный рост энергии события приводит к 10-кратному снижению его вероятности (закон повторяемости Гутенберга–Рихтера). В XIX веке наблюдалась вспышка в 5 раз более сильная, по современным оценкам, чем самая сильная вспышка в XX веке. Возможно, что раз в десятки и сотни тысяч лет на солнце происходят вспышки, аналогичные по редкости и масштабности земным извержениям супервулканов. Всё же это крайне редкие события. Крупные солнечные вспышки, даже если они не будут направлены на Землю, могут несколько увеличить солнечную светимость и привести к дополнительному нагреву Земли. (Обычные вспышки дают вклад не более 0,1 процента.) Верхний предел энергии Солнечной вспышки, как показывает Арнон Дар [Dar 2008], составляет одну треть от энергии, ежесекундно излучаемой Со

Последнее изменение этой страницы: 2016-06-08

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...