Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Глава 5. Основы и клиническое применение магнитно-резонансной томографии

Магнитно-резонансная томография (МРТ) - один из самых молодых методов лучевой диагностики. Метод основан на феномене ядерно-магнитного резонанса, который известен с 1946 г., когда F. Bloch и E. Purcell показали, что некоторые ядра, находящиеся в магнитном поле, индуцируют электромагнитный сигнал под воздействием радиочастотных импульсов. В 1952 г. за открытие магнитного резонанса им была вручена Нобелевская премия.

В 2003 г. Нобелевская премия по медицине была присуждена британскому ученому Питеру Мэнсфилду (Sir Peter Mansfield) и его американскому коллеге Полу Лотербуру (Paul Lauterbur) за исследования в области МРТ. В начале 1970-х гг. Пол Лотербур открыл возможность получать двухмерное изображение благодаря созданию градиента в магнитном поле. Анализируя характеристики испускаемых радиоволн, он определил их происхождение. Это позволило создавать двухмерные изображения, которые нельзя получить другими методами.

Доктор Мэнсфилд развил исследования Лотербура, установив, каким образом можно анализировать сигналы, которые подает в магнитном поле человеческий организм. Он создал математический аппарат, позволяющий в кратчайший срок преобразовывать эти сигналы в двухмерное изображение.

Споров по поводу приоритета открытия МРТ было много. Американский физик Рэймонд Дамадьян (Raymond Damadian) объявил себя настоящим изобретателем МРТ и создателем первого томографа.

Вместе с тем принципы построения магнитно-резонансных изображений человеческого тела задолго до Рэймонда Дамадьяна разработал Владислав Иванов. Исследования, которые в то время казались сугубо теоретическими, через десятки лет нашли широкое практическое применение в клинике (с 80-х гг. ХХ века).

Для получения МР сигнала и последующего изображения используют постоянное гомогенное магнитное поле и радиочастотный сигнал, который изменяет магнитное поле.

Основные компоненты любого МР-томографа:

- магнит, который создает внешнее постоянное магнитное поле с вектором магнитной индукции В0; в системе СИ единицей измерения магнитной индукции является 1 Тл (Тесла) (для сравнения - магнитное поле Земли составляет примерно 5 x 10-5 Тл). Одним из основных требований,

предъявляемых к магнитному полю, является его однородность в центре тоннеля;

- градиентные катушки, которые создают слабое магнитное поле в трех направлениях в центре магнита, и позволяют выбрать область исследования;

- радиочастотные катушки, которые используются для создания электромагнитного возбуждения протонов в теле пациента (передающие катушки) и для регистрации ответа сгенерированного возбуждения (приемные катушки). Иногда приемные и передающая катушки совмещены в одну при исследовании различных частей тела, например головы.

При выполнении МРТ:

- исследуемый объект помещается в сильное магнитное поле;

- подается радиочастотный импульс, после которого происходит изменение внутренней намагниченности с постепенным его возвращением к исходному уровню.

Эти изменения намагниченности многократно считываются для каждой точки исследуемого объекта.

ФИЗИЧЕСКИЕ ОСНОВЫ МРТ

Организм человека примерно на 4/5 состоит из воды, около 90% вещества составляет водород - 1Н. Атом водорода является простейшей структурой. В центре есть положительно заряженная частица - протон, а на периферии - значительно меньшая по массе: электрон.

Постоянно вращается вокруг ядра (протона) только электрон, но одновременно с этим происходит вращение протона. Он вращается примерно как волчок вокруг собственной оси, и одновременно его ось вращения описывает окружность, так что получается конус (см. рис. 5.1, а, б).

Частота вращения протона (прецессия) очень высока - примерно 40 МГц, т. е. за 1 с. он делает - около 40 млн оборотов. Частота вращения прямо пропорциональна напряженности магнитного поля и называется частотой Лар-мора. Движение заряженной частицы формирует магнитное поле, вектор которого совпадает с направлением конуса вращения. Таким образом, каждый протон можно представить в виде маленького магнита (спина), который имеет свое собственное магнитное поле и полюсы - северный и южный (рис. 5.1).

Протоны имеют самый высокий магнитный момент и, как отмечалось выше, самую большую концентрацию в организме. Вне сильного магнитного поля эти маленькие магниты (спины) ориентированы хаотично. Попадая под действие сильного магнитного поля, которое составляет основу магнитно-резонансной томографической установки, они выстраиваются вдоль основного магнитного вектора В0. Возникающая при этом продольная намагниченность спинов будет максимальной (см. рис. 5.2).

После этого подается мощный радиочастотный импульс определенной (резонансной) частоты, близкой к частоте Лармора. Он заставляет все протоны перестраиваться перпендикулярно (90°) основному магнитному вектору В0 и совершать синхронное вращение, вызывая собственно ядерный резонанс.

Продольная намагниченность становится равной нулю, но возникает поперечная намагниченность, так как все спины направлены перпендикулярно основному магнитному вектору В0 (см. рис. 5.2).

Рис. 5.1.Принцип ядерного магнитного резонанса: а - протоны вращаются (прецессируют) вокруг собственной оси с частотой примерно 40 млн оборотов в секунду; б - вращение происходит вокруг оси по типу «волчка»; в - движение заряженной частицы вызывает формирование магнитного поля, который

можно представить в виде вектора

Под влиянием основного магнитного вектора В0 спины постепенно возвращаются к исходному состоянию. Это процесс называется релаксацией.Поперечная намагниченность уменьшается, а продольная увеличивается (см. рис. 5.2).

Скорость этих процессов зависит от наличия химических связей; наличия или отсутствия кристаллической решетки; возможности свободной отдачи энергии с переходом электрона с более высокого на более низкий энергетический уровень (для воды это макромолекулы в окружении); неоднородности магнитного поля.

Время, за которое величина основного вектора намагниченности вернется к 63% первоначального значения, называют временем Т1-релаксации, или спин-решетчатой релаксацией.

После подачи радиочастотного импульса все протоны вращаются синхронно (в одной фазе). Затем из-за небольшой неоднородности магнитного поля спины, вращаясь с разной частотой (частотой Лармора), начинают вращаться в разных фазах. Другая частота резонанса позволяет «привязать» тот или иной протон к конкретному месту в исследуемом объекте.

Время релаксации Т2 наступает приблизительно в момент начала рас-фазировки протонов, которая происходит из-за негомогенности внешнего магнитного поля и наличия локальных магнитных полей внутри исследуемых тканей, т. е. когда спины начинают вращаться в разных фазах. Время,

за которое вектор намагниченности уменьшится до 37% первичного значения, называют временем Т2-релаксации, или спин-спиновой релаксацией.

Рис. 5.2.Этапы МР-исследования: а - объект помещается в сильное магнитное поле. Все векторы направлены вдоль вектора В0; б - подается радиочастотный резонансный 90° сигнал. Спины направлены перпендикулярно вектору В0; в - после этого происходит возврат к первоначальному состоянию (возрастает продольная намагниченность) - Т1 релаксация; г - из-за негомогенности магнитного поля в зависимости от удаленности от центра магнита спины начинают вращаться с разной частотой - происходит расфазировка

Эти изменения намагниченности считываются многократно для каждой точки исследуемого объекта и в зависимости от начала измерения МР-сиг-нала, характерного для разных импульсных последовательностей, мы получаем Т2-взвешенные, Т1-взвешенные или протон-взвешенные изображения.

В МРТ радиочастотные импульсы могут подаваться в различных комбинациях. Эти комбинации называются импульсными последовательностями. Они позволяют добиваться различной контрастности мягкотканных структур и применять специальные методики исследования.

Последнее изменение этой страницы: 2016-06-09

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...