Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Линейные неоднородные дифференциальные уравнения с постоянными

коэффициентами.

 

Уравнения с правой частью специального вида.

Представляется возможным представить вид частного решения в зависимости от вида правой части неоднородного уравнения.

Различают следующие случаи:

I. Правая часть линейного неоднородного дифференциального уравнения имеет вид:

где - многочлен степени m.

Тогда частное решение ищется в виде:

Здесь Q(x)- многочлен той же степени, что и P(x), но с неопределенными коэффициентами, а r – число, показывающее сколько раз число a является корнем характеристического уравнения для соответствующего линейного однородного дифференциального уравнения.

 

Пример. Решить уравнение .

Решим соответствующее однородное уравнение:

Теперь найдем частное решение исходного неоднородного уравнения.

Сопоставим правую часть уравнения с видом правой части, рассмотренным выше.

Частное решение ищем в виде: , где

Т.е.

Теперь определим неизвестные коэффициенты А и В.

Подставим частное решение в общем виде в исходное неоднородное дифференциальное уравнение.

Итого, частное решение:

 

 

Тогда общее решение линейного неоднородного дифференциального уравнения:

 

 

II. Правая часть линейного неоднородного дифференциального уравнения имеет вид:

 

Здесь Р1(х) и Р2(х) – многочлены степени m1 и m2 соответственно.

Тогда частное решение неоднородного уравнения будет иметь вид:

 

где число r показывает сколько раз число является корнем характеристического уравнения для соответствующего однородного уравнения, а Q1(x) и Q2(x) – многочлены степени не выше m, где m- большая из степеней m1 и m2.

 

Заметим, что если правая часть уравнения является комбинацией выражений рассмотренного выше вида, то решение находится как комбинация решений вспомогательных уравнений, каждое из которых имеет правую часть, соответствующую выражению, входящему в комбинацию.

Т.е. если уравнение имеет вид: , то частное решение этого уравнения будет где у1 и у2 – частные решения вспомогательных уравнений

и

 

Для иллюстрации решим рассмотренный выше пример другим способом.

Пример. Решить уравнение

 

Правую часть дифференциального уравнения представим в виде суммы двух функций f1(x) + f2(x) = x + (-sinx).

Составим и решим характеристическое уравнение:

 

1. Для функции f1(x) решение ищем в виде .

Получаем: Т.е.

 

Итого:

 

 

2. Для функции f2(x) решение ищем в виде: .

Анализируя функцию f2(x), получаем:

 

Таким образом,

 

 

 

Итого:

 

Т.е. искомое частное решение имеет вид:

 

Общее решение неоднородного дифференциального уравнения:

 

 

 

Рассмотрим примеры применения описанных методов.

 

Пример. Решить уравнение

Составим характеристическое уравнение для соответствующего линейного однородного дифференциального уравнения:

 

Общее решение однородного уравнения:

Теперь найдем частное решение неоднородного уравнения в виде:

Воспользуемся методом неопределенных коэффициентов.

Подставляя в исходное уравнение, получаем:

Частное решение имеет вид:

Общее решение линейного неоднородного уравнения:

Пример. Решить уравнение

 

Характеристическое уравнение:

Общее решение однородного уравнения:

Частное решение неоднородного уравнения: .

Находим производные и подставляем их в исходное неоднородное уравнение:

Получаем общее решение неоднородного дифференциального уравнения:

 

 

Нормальные системы обыкновенных дифференциальных уравнений.

 

Определение. Совокупность соотношений вида:

где х- независимая переменная, у1, у2,…,уn – искомые функции, называется системой дифференциальных уравнений первого порядка.

 

Определение. Система дифференциальных уравнений первого порядка, разрешенных относительно производных от неизвестных функций называется нормальной системой дифференциальных уравнений.

Такая система имеет вид:

(1)

 

Для примера можно сказать, что график решения системы двух дифференциальных уравнений представляет собой интегральную кривую в трехмерном пространстве.

 

Теорема. (Теорема Коши). Если в некоторой области (n-1) –мерного пространства функции непрерывны и имеют непрерывные частные производные по , то для любой точки этой области существует единственное решение

системы дифференциальных уравнений вида (1), определенное в некоторой окрестности точки х0 и удовлетворяющее начальным условиям

 

Определение. Общим решениемсистемы дифференциальных уравнений вида (1) будет совокупность функций , , … , которые при подстановке в систему (1) обращают ее в тождество.

 

Последнее изменение этой страницы: 2016-06-09

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...