Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Период количественных законов: конец XVIII — середина XIX в

Главным итогом развития химии в период количественных законов стало её превращение в точную науку, основанную не только на наблюдении, но и на измерении. За открытым Лавуазье законом сохранения массы последовал целый ряд новых количественных закономерностей — стехиометрические законы:

  • Закон эквивалентов (И. В. Рихтер, 1791—1798)
  • Закон постоянства состава (Ж. Л. Пруст, 1799—1806)
  • Закон кратных отношений (Дж. Дальтон, 1803)
  • Закон объёмных отношений, или закон соединения газов (Ж. Л. Гей-Люссак, 1808)
  • Закон Авогадро (А. Авогадро, 1811)
  • Закон удельных теплоёмкостей (П. Л. Дюлонг и А. Т. Пти, 1819)
  • Закон изоморфизма (Э. Мичерлих, 1819)
  • Законы электролиза (М. Фарадей, 1830-е гг.)
  • Закон постоянства количества теплоты (Г. Гесс, 1840)
  • Закон атомов (С. Канниццаро, 1858)[20]

Символы атомов Дальтона

Основываясь на законе кратных отношений и законе постоянства состава, объяснить которые, не прибегая к предположению о дискретности материи, невозможно, Дж. Дальтон разработал свою атомную теорию (1808). Важнейшей характеристикой атома элемента Дальтон считал атомный вес. Проблема определения атомных весов на протяжении нескольких десятилетий являлась одной из важнейших теоретических проблем химии.

Огромный вклад в развитие химической атомистики внёс шведский химик Й. Я. Берцелиус, определивший атомные массы многих элементов. Он же в 1811—1818 разработал электрохимическую теорию сродства, объяснявшую соединение атомов на основе представления о полярности атомов и электроотрицательности.

Свою молекулярную теорию, органично дополняющую атомистику Дальтона, разработал А. Авогадро, однако его взгляды долгое время не находили признания.

Окончательную ясность в атомно-молекулярную теорию внёс С. Канниццаро. Реформа Канниццаро, получившая всеобщее признание на Международном конгрессе химиков в Карлсруэ (1860), завершила период, основным содержанием которого стало установление количественных законов. Определения атомных масс химических элементов, которые выполнил в первой половине 1860-х годов бельгийский химик Ж. С. Стас, до конца XIX века считались наиболее точными и открыли дорогу для систематизации элементов.

Стехиометрия

Блестящие успехи количественных методов исследования вещества, сделавшие возможной химическую революцию, уже в начале XIX века привели к новому фундаментальному изменению в естествознании вообще и в химии в частности. За открытым Лавуазье законом сохранения массы последовал целый ряд новых количественных закономерностей – стехиометрические законы

8.Современная химия

В начале ХХ века произошла революция в физике: на смену системе знаний о материи, основанной на механике Ньютона, пришли квантовая теория и теория относительности. Установление делимости атома и создание квантовой механики вложили новое содержание в основные понятия химии. Успехи физики в начале XX века позволили понять причины периодичности свойств элементов и их соединений, объяснить природу валентных сил и создать теории химической связи между атомами. Появление принципиально новых физических методов исследования предоставило химикам невиданные ранее возможности для изучения состава, структуры и реакционной способности вещества. Всё это в совокупности обусловило в числе прочих достижений и блестящие успехи биологической химии второй половины XX века – установление строения белков и ДНК, познание механизмов функционирования клеток живого организма.

Учение о валентности; теория химического строения органических соединений; периодический закон и периодическая система элементов; учение об асимметрическом атоме углерода; теория электролитической диссоциации; координационная теория; учение о радиоактивности; учение о катализе; теория химической связи.

 

Современная химия очень тесно связана со всеми отраслями народного хозяйства. Практически ни одна наука не обходится без достижений химии. Она все глубже проникает во все области как научной, так и хозяйственной деятельности. Если рассматривать взаимосвязь химии и других наук, можно выделить промежуточные (переходные) науки: физическая химия, геохимия, биохимия и множество других. Медицина, парфюмерия, металлургическая и топливная промышленность – это лишь малая часть отраслей, которые просто не смогут существовать без развития химии.

В настоящее время выделяют два основных направления химии: органическая и неорганическая. Органическая химия изучает соединения углерода с другими элементами (эти знания широко используются в топливной промышленности, при производстве полимеров и пластмасс). Неорганическая же химия изучает остальные соединения.

Вторая половина XX века ознаменовала новый виток развития химии. Быстрое развитие математики, электроники и появления в арсенале химиков точных измерительных приборов и компьютеров позволили вести расчеты, которые раньше были весьма затруднительны, а порой и невозможны. Моделирование химических процессов, обработка больших объемов данных, расчеты структур сложных веществ позволили ученым значительно расширить значимость химии. Удешевление исследований и экспериментов, а также повышение их точности позволило применить их и для менее наукоемких отраслей. Началось развитие коммерческой химии.

Сегодня тысячи химических лабораторий проводят исследования для самых различных отраслей народного хозяйства, развивая коммерческую химию. Парфюмерия, производство самых разнообразных полимерных веществ, пластмасс, строительных материалов с заданными параметрами и множество других областей применения химии – основные потребители этих исследований.

Развитие химии носит и стратегический характер. Важное направление – получение дешевого альтернативного топлива. Не секрет, что запасы нефти и газа, основных на сегодняшний день источников энергии, уменьшаются с каждым днем. Поэтому именно на химию возложена проблема энергии будущего.

Дальнейшее развитие химии предусматривает помимо всего прочего разработку экологически безопасных аналогов для применяемых сегодня технологий, которые негативно влияют на окружающую среду.

Неоспоримо, что сегодня химия занимает значительную часть в жизни человечества, еще более очевидно, что она - наука будущего.

 

 

9.Химия в Древнем мире

Химия древности. Химия, наука о составе веществ и их превращениях, начинается с открытия человеком способности огня изменять природные материалы. По-видимому, люди умели выплавлять медь и бронзу, обжигать глиняные изделия, получать стекло еще за 4000 лет до н.э. К 7 в. до н.э. Египет и Месопотамия стали центрами производства красителей; там же получали в чистом виде золото, серебро и другие металлы. Примерно с 1500 до 350 до н.э. для производства красителей использовали перегонку, а металлы выплавляли из руд, смешивая их с древесным углем и продувая через горящую смесь воздух. Самим процедурам превращения природных материалов придавали мистический смысл.
Греческая натурфилософия. Эти мифологические идеи проникли в Грецию через Фалеса Милетского (ок. 625 - ок. 547 до н.э.), который возводил все многообразие явлений и вещей к единой первостихии - воде. Однако греческих философов интересовали не способы получения веществ и их практическое использование, а главным образом суть происходящих в мире процессов. Так, древнегреческий философ Анаксимен (585-525 до н.э.) утверждал, что первооснова Вселенной - воздух: при разрежении воздух превращается в огонь, а по мере сгущения становится водой, затем землей и, наконец, камнем. Гераклит Эфесский (конец 6 - начало 5 вв. до н.э.) пытался объяснить явления природы, постулируя в качестве первого элемента огонь.
Четыре первоэлемента. Эти представления были объединены в натурфилософии Эмпедокла из Агригента (490-430 до н.э.) - создателя теории четырех начал мироздания. В различных вариантах его теория властвовала над умами людей более двух тысячелетий. Согласно Эмпедоклу, все материальные объекты образуются при соединении вечных и неизменных элементов-стихий - воды, воздуха, земли и огня - под действием космических сил любви (притяжения) и ненависти (отталкивания). Теорию элементов Эмпедокла приняли и развили сначала Платон (427-347 до н.э.), уточнивший, что нематериальные силы добра и зла могут превращать эти элементы один в другой, а затем Аристотель (384-322 до н.э.). Согласно Аристотелю, элементы-стихии - это не материальные субстанции, а носители определенных качеств - тепла, холода, сухости и влажности. Этот взгляд трансформировался в идею четырех "соков" Галена(129-200 н.э.) и господствовал в науке вплоть до 17 в. Другим важным вопросом, занимавшим греческих натурфилософов, был вопрос о делимости материи. Родоначальниками концепции, получившей впоследствии название "атомистической", были Левкипп (ок. 500-440 до н.э.), его ученик Демокрит (ок. 470-360 до н.э.) и Эпикур (ок. 342-270 до н.э.). Согласно их учению, существуют только пустота и атомы - неделимые материальные элементы, вечные, неразрушимые, непроницаемые, различающиеся формой, положением в пустоте и величиной; из их "вихря" образуются все тела. Атомистическая теория оставалась непопулярной в течение двух тысячелетий после Демокрита, но не исчезла полностью. Одним из ее приверженцев стал древнегреческий поэт Тит Лукреций Кар (95-55 до н.э.), изложивший взгляды Демокрита и Эпикура в поэме О природе вещей (De Rerum Natura).

 

10.Металлургия в древнем мире

ВЫПЛАВКА МЕТАЛЛОВ. Первыми металлами, которые начали использоваться человечеством, были медь, свинец, золото и серебро. Самые древние медные изделия – булавки, сверла, бусы- были найдены в Западной Азии, их возраст соответствует примерно одиннадцати тысячам лет, Пока среди историков нет единого мнения относительно того, какая медь использовалась в качестве первого металла- самородная или полученная путем плавки окисных руд. Вероятно, в разных районах мира имели место оба пути освоения этого металла.

Наиболее древние свинцовые изделия найдены в Малой Азии и датируются 7-6 тысячелетиями до н.э. Поскольку самородки свинца в природе встречаются крайне редко, его изначально получали из минерала галенита.

Самые древние из найденных золотых и серебряных изделий относятся к 5-4 тысячелетию до н.э., причем первые изготовлены из самородного золота, содержащего около 20% примесей других металлов. Полагают, что серебро получали в основном из серебристых свинцовых руд (содержащих заметное количество серебра). В древности широко использовался также сплав золота с серебром

Начиная с 3 тысячелетия до н.э. человечеству стало известно олово. Одновременно широкое распространение получил сплав меди с оловом – бронза, что явилось началом новой эпохи в развитии человечества, получившей название, бронзовый век,. Вероятнее всего, бронзу в древности получали не сплавлением двух металлов, а совместной плавкой медной и оловянной руды.

Противоречивые точки зрения существуют относительно умения выделять из руды металлическую сурьму в древности. Несмотря на сообщения о находках некоторых изделий из сурьмы, относящихся ко 2-1 тысячелетиям до н. э., ряд историков полагает, что процесс выплавки этого металла стал известен лишь в средние века. Отметим, что в древних письменных источниках (папирусах) отсутствует специальный знак для обозначения сурьмы.

Эпоха изготовления изделий из железа - ,железный век, - наступила намного позже эпохи бронзы. Наиболее ранние образцы обработанного железа, найденные на территории Малой Азии, в Египте и в Месопотамии, изготовлены из небесного металла, - метеоритного железа, содержащего около 4 – 10% никеля. Самые древние железные изделия из земного,- выплавленного из руды – железа датируются примерно 2 тысячелетием до н.э. (широкое распространение подобные предметы получили несколько позже). В древности железо обычно изготавливали в горнах так называемым сыродутным способом с применением древесного угля. Так получали крицы – рыхлые куски железа, которые затем проковывали. Постепенно техника выплавки и обработки железа достигла очень высокого уровня. Например, в 4в. до н.э. в Индии из железа, содержащего лишь около 0,3% примесей, была изготовлена колонна, которая сохранилась до настоящего времени.

Согласно документальным свидетельствам, ртуть стала использоваться позже – к 3 – 2вв. до н.э., хотя есть данные о находках ртути, относящихся к 16 -15 вв. до н.э. Ртуть получали нагреванием киновари. На рубеже новой эры был разработан способ извлечения золота из руды ртутным методом (из амальгамы путем выпаривания ртути).

По свидетельству дошедших до нас письменных источников, в начале 1 тысячелетия н.э. широкое распространение получило искусство подделки металлов - изготовления сплавов, похожих на золото, серебро или электрон. Подобные подделки делали обычно на основе меди с самыми разнообразными добавками, в числе которых были олово, ртуть, свинец, окись цинка, мышьяк и др. Тогда же получило распространение изготовление изделий из латуни (сплава меди с цинком).

 

 

11.Теоретические представления древних о природе

Последнее изменение этой страницы: 2016-08-29

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...