Главная Случайная страница


Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Структурные характеристики вариационного ряда

 

Медиана распределения

 

При изучении вариации применяются такие характеристики вариационного ряда, которые описывают количественно его структуру, строение. Такова, например, медиана — величина варьирующего признака, делящая совокупность на две равные части — со значениями признака меньше медианы и со значениями признака больше медианы (третьего банка из пяти в начале подразд. 5.6, т.е. 268 млн руб.).

На примере этих данных видно принципиальное различие между медианой и средней величиной. Медиана не зависит от значений признака на краях ранжированного ряда. Если бы капитал крупнейшего банка Санкт-Петербурга был в десять раз больше, величина медианы не изменилась бы. Поэтому часто медиану используют как более надежный показатель типичного значения признака, нежели арифметическая средняя, если ряд значений неоднороден, включает резкие отклонения от средней. В данном ряду средняя величина собственного капитала равна 394 млн руб., сложилась под влиянием наибольшей варианты. 80% банков имеют капитал меньше среднего и лишь 20% — больше. Вряд ли такую среднюю можно считать типичной величиной. При четном числе единиц совокупности за медиану принимают арифметическую среднюю величину из двух центральных вариант, например при 10 значениях признака — среднюю из пятого и шестого значений в ранжированном ряду.

В интервальном вариационном ряду для нахождения медианы применяется формула

В равноинтервальном ряду медиана — это середина среднего интервала при их нечетном числе или средняя арифметическая из границ двух средних интервалов при их четном числе.

В дискретном вариационном ряду медианой следует считать значение признака в той группе, в которой накопленная частота превышает половину численности совокупности. Например, для данных табл. 5.1 медианой числа забитых за игру мячей будет два.

 

Квартили распределения

 

Аналогично медиане вычисляются значения признака, делящие совокупность на четыре равные по числу единиц части. Эти величины называются квартилями и обозначаются за-

 

Значения признака, делящие ряд на пять равных частей, называют квинтилями, на десять частей — децилями, на сто частей — перцентилями. Поскольку эти характеристики применяются лишь при необходимости подробного изучения структуры вариационного ряда, приводить их формулы и расчет не будем.

 

Мода распределения

 

Бесспорно, важное значение имеет такая величина признака, которая встречается в изучаемом ряду, в совокупности чаще всего. Такую величину принято называть модой и обозначать Мо. В дискретном ряду мода определяется без вычисления как значение признака с наибольшей частотой. Например, по данным табл. 5.1 чаще всего за футбольный матч было забито два мяча — 53 раза. Модой является число два. Обычно встречаются ряды с одним модальным значением признака. Если два или несколько равных (и даже несколько различных, но больших, чем соседние) значений признака имеются в вариационном ряду, он считается соответственно бимодальным («иерблюдообразным») либо мультимодальным. Это говорит

 

о неоднородности совокупности, возможно, представляющей собой агрегат нескольких совокупностей с разными модами.

Так и в толпе туристов, приехавших из разных стран, вместо одной, преобладающей среди местных жителей модной одежды можно встретить смесь «мод», принятых у разных народов мира.

В интервальном вариационном ряду, тем более при непрерывной вариации признака, строго говоря, каждое значение признака встречается только один раз. Модальным интервалом является интервал с наибольшей частотой. Внутри этого интервала находят условное значение признака, вблизи которого плотность распределения, т.е. число единиц совокупности, приходящееся на единицу измерения варьирующего признака, достигает максимума. Это условное значение и считается точечной модой. Логично предположить, что такая точечная мода располагается ближе к той из границ интервала, за которой частота в соседнем интервале больше частоты в интервале за другой границей модального интервала. Отсюда имеем обычно применяемую формулу

Вычисление моды в интервальном ряду весьма условно. Приближенно Мо может быть определена графически (см. рис. 5.1).

В равноинтервальном ряду при расчете моды (5.5) следует использовать плотность распределения.

К изучению структуры вариационного ряда средняя арифметическая величина тоже имеет отношение, хотя основное значение этого обобщающего показателя другое. В ряду распределения хозяйств по урожайности (табл. 5.6) средняя ве-

 

личина урожайности вычисляется как взвешенная по частоте середина интервалов х' (по формуле (5.2)):

Последнее изменение этой страницы: 2016-07-28

lectmania.ru. Все права принадлежат авторам данных материалов. В случае нарушения авторского права напишите нам сюда...